RiceNIC Prototyping Network Interfaces

Jeffrey Shafer Scott Rixner

RiceNIC Overview

Gigabit Ethernet Network Interface Card

RiceNIC Overview

- Reconfigurable and programmable
 - Can alter both FPGA design and program embedded processors
- Built on commercial development board
- Reference design is freely available
- Targeted at research and education applications

RiceNIC Target Applications

Experimental research into network server architectures

- □ Explore hardware/software interface between OS and NIC
- Explore NIC architectures and desired functions

Examples using RiceNIC

- □ TCP offload *(at Rice)*
 - Run TCP stack on NIC
 - Moved connection management from host OS to NIC
- □ Low Power Networking (at University of Florida)
 - Adaptive MAC varies performance versus energy efficiency
- □ Virtual Machines (at Rice, EPFL and HP Labs)
 - Each virtual machine can communicate independently with NIC

Outline

- RiceNIC Introduction
- Competing Development Methods
- NIC Architecture and Implementation
- Applications
 - Education and Research
- Lessons Learned
- Conclusions

How to Build the RiceNIC Prototyping Tool?

- Buy a commercial software programmable NIC?
 Straightforward to rewrite firmware
 - Used for previous research with mixed results
 - Insufficient performance / flexibility for prototyping
- Build new board from scratch?
 - Highly customizable
 - Expensive / time consuming
- Use commercial prototyping board?
 - Inexpensive / fast

We Chose a Commercial Board. How Did it Turn Out?

Avnet Development Board

- FPGA Development Board
- Virtex and Spartan FPGAs
- 2 PowerPC 405 processors
 - □ 300 MHz
 - □ Separate 16kB I and D-cache
- Serial Port

- 256 MB DDR Memory
- 2 MB SRAM Memory
- 56kB on-FPGA memory
- Gigabit Ethernet PHY
- 64-bit / 66 MHz PCI bus

Avnet Hardware

Avnet Memory

Custom Design

System Architecture

FPGA Utilization

- Implemented with Xilinx tools (ISE and EDK)
- Used ChipScope on-chip logic analyzer

Virtex FPGA		Spartan FPGA	
9,089 / 27,392	33%	2,361 / 6,144	38%
11,811 / 27,392	43%	2,504 / 6,144	40%
51 / 136	37%	6 / 16	37%
9,164 / 13,696	66%	3,070 / 3,072	99%
10 / 16	62%	2 / 4	81%
5 / 8	62%	N/A	N/A
	Virtex FPG 9,089 / 27,392 11,811 / 27,392 51 / 136 9,164 / 13,696 10 / 16 5 / 8	Virtex FPGA 9,089 / 27,392 33% 11,811 / 27,392 43% 51 / 136 37% 9,164 / 13,696 66% 10 / 16 62% 5 / 8 62%	Virtex FPGA Spartan FPGA 9,089 / 27,392 33% 2,361 / 6,144 11,811 / 27,392 43% 2,504 / 6,144 51 / 136 37% 6 / 16 9,164 / 13,696 66% 3,070 / 3,072 10 / 16 62% 2 / 4 5 / 8 62% N/A

Virtex FPGA Placement

Debugging Support

Software Debugging

- □ Serial Console (RS-232 port)
 - Command line interface to PowerPC processors
 - Runtime debugging / configuration changes / bootstrapping

Firmware Profiler

- Timer based statistical profiler (similar to Oprofile)
- Exports results via serial console
- Hardware Debugging
 - Xilinx Chipscope on Virtex/Spartan FPGAs

Essential Features Not Found in Other NICs

Performance

- TCP streaming test (*netperf*)
- RiceNIC firmware using 1 processor
- High throughput for packets larger than 1000 bytes
- Spare capacity for researchers to prototype new systems

RiceNIC - Prototyping Network Interfaces

RiceNIC Application - Education

- Added Network Address Translation module to RiceNIC firmware
- NIC still runs at full Ethernet speeds
- Project time 1 day
 - □ Feasible for a class project
- Could have implemented similar module on any commercial software programmable NIC, but...
 - Debugging of NAT module by <u>non-experts</u> greatly assisted by RiceNIC serial console which printed packet traces

RiceNIC Application – Low Power MAC

Energy Efficient Internet Project ⁺ (at USF and UF)

- Replacing MAC core on RiceNIC FPGA with a custom low-power variant that supports adaptive link rates
 - This research could not be done on any software-programmable NIC!

[†] The Energy Efficient Internet Project: <u>http://www.csee.usf.edu/~christen/energy/main.html</u>

RiceNIC Application Networking in Virtual Machines ⁺

- Each guest OS can talk directly to single shared NIC
 - Separate interfaces for concurrent guests
- Experimental research project with many modifications
 - FPGA provides isolated contexts in memory + event notification
 - Firmware provides packet multiplexing / demultiplexing
 - □ Xen / OS modifications
 - Used 1 PowerPC processor and 12MB of RAM

[†] P. Willmann, J. Shafer, et.al, <u>Concurrent Direct Network</u> <u>Access for Virtual Machine Monitors</u>, *The International Symposium on High Performance Computer Architecture* (*HPCA'07*), Phoenix, AZ, (Feb 2007)

RiceNIC Application - Virtualization

- Prototyping (with RiceNIC) critical to project success
- Could not use software programmable NIC
 - Needed to change hardware architecture
 - □ Software emulation too slow
- RiceNIC prototype ran at full speed
- Used RiceNIC to experimentally determine key architectural features
 - Minimum on-NIC packet buffer size per virtual machine
- Could not obtain equivalent results via simulation in a timely fashion

Lessons Learned

- Use a commercial development board
 - Avnet card perfect for RiceNIC
 - Contains large FPGA, PCI, GigE, and memory
 - □ Board arrived fully tested / documented
 - Implementation can begin immediately
 - Reduced up-front project expenses
 - For low volume RiceNIC, might never be cheaper to fabricate a custom board

Lessons Learned – Design Time

Design time

- □ Hardware (FPGA) design
 - 1 year / 1 graduate student
- □ Software (firmware / driver) design
 - 1 month / 1 graduate student
 - Significant prior experience in writing NIC firmware

Development stages

- □ Learning Xilinx ISE / EDK tools 1 month
 - Time spent would be comparable with competing tools
- □ Design / Implementation 9 months
- \Box Testing 3 months

Lessons Learned – Testing

PCI core required extensive iterative testing

Must work correctly on a wide variety of host computer systems with non-deterministic bus transfer and error timing characteristics

Simulator can ignore these low-level issues...

- understand understa
- Saving grace Fully-functional prototype lends confidence to experimental research

Lessons Learned

FPGAs well matched with requirements
 Clock rates required for gigabit NIC are achievable with modern FPGAs

 66 MHz PCI interface, 100 MHz general logic, 300 MHz embedded processors

□ Saved \$\$ and time versus creating an ASIC

Lessons Learned

- How would you build a 10 Gigabit NIC?
 Make same design choice to use a commercial prototyping board
 - Newer Avnet boards have larger FPGAs, PCI Express links, and 10G interfaces
 - Prototyping boards closely follow the commercial state-of-the-art

RiceNIC Usage

RiceNIC is <u>free for research and education applications</u>

Platform includes the FPGA configuration (bitstream), VHDL source code, embedded PowerPC firmware, and Linux device driver

Purchase Avnet Virtex-II Pro development board

- Additional requirements to modify FPGA designs
 - □ Xilinx development software (ISE, EDK, Chipscope)
 - New licenses for the Xilinx MAC and PCI cores
 - Can still modify firmware without any FPGA changes or additional licenses

Conclusions

- Research into network system demands experimental prototypes
 - □ Complex, asynchronous interactions among system components
 - □ Simulation insufficient for new architectures
 - Prototyping tools such as RiceNIC are critical for the development and understanding of future computer systems
- Development method was successful
- RiceNIC already used in several research projects at several institutions
- Would we use a commercial prototyping board to build the RiceNIC again? Yes!

Questions?

RiceNIC website:

http://www.cs.rice.edu/CS/Architecture/ricenic/

