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+ Open source MapReduce framework

« Scalable way to perform data-intensive computation on a
commodity cluster computer

* Inspired by Google’s web indexing framework

+ Designed for portability
« Written in Java
« Runs on Linux, FreeBSD, Solaris, OS/X, Windows, ...
« Uses native filesystems to store data: exts4, XFS, UFS2, NTFS, ...

* In widespread use today
« Amazon, Facebook, Microsoft Bing, Yahoo, ...
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« Large clusters are built from commodity hardware
+ x86 processors, SATA disks, Ethernet
* Yahoo cluster

* 4000 nodes (32000 total CPU cores)

* 4 1TB disks per node (16PB total storage)

+ Hadoop software ties the cluster together

« Scheduling — Distribute jobs across cluster
« Storage — User-level filesystem for applications

« Reliability — Data replication, re-spawning failed jobs
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Hadoop Performance — Slow?

* Widely publicized paper in SR T
2009 compared Hadoop
performance against parallel
databases for similar
workloads?

Claim: Parallel databases are

2-3 times faster than
MapReduce 1Nodes 10Nodes 25Nodes 50 Nodes 100 Nodes
| I vertica [B] BMS X[~ Hadoop|

« "The MapReduce model on
multi-thousand node clusters
is a brute force solution”

(1) A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. Dewitt, S. Madden, and M. Stonebraker,
"A Comparison of Approaches to Large-Scale Data Analysis,” SIGMOD 2009

March 30th, 2010 4 ISPASS 2010




Ongoing Debate

 Debate in paper focuses on best high-level programming style
« MapReduce or Parallel Database?
« Assumption: High-level differences are causing the performance gap

- Different hypothesis

 Performance gap caused by low-level Hadoop implementation
bottlenecks

 Data-intensive computing — Is Hadoop using the storage system
efficiently?

« Today’s talk:
« Explore the low-level implementation of Hadoop
+ Analyze the interaction between Hadoop and storage
* Fix performance bottlenecks
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Hadoop Distributed Filesystem (HDFS)

* Global filesystem used by Hadoop applications
* Clone of Google Filesystem (GFS) 3
* Any client can access any file anywhere in the cluster

« Simple access semantics: Write-once, read-many

« Each (large) HDFS file composed of multiple 64MB blocks
+ Each block can be saved to any node in the cluster

« Each block can be replicated to many nodes for redundancy

« Clients prefer to access data from local nodes (when given a
choice)

(3) Ghemawat, S., Gobioff, H., and S. Leung, “The Google File System”, SOSP 2003
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Hadoop Distributed Filesystem (HDFS)

- NameNode

Stores filesystem Control Node

namespace -‘ e

Stores mapping from
filename to HDFS block(s)

Coordinates allocation and Network Switch
replication i

Single point of failure ‘
Node Node Node

+ DataNode

» Store HDFS blocks (64MB)
HDFS HDFS HDFS
+ Each block is independent Disk Disk Disk
o Y N« Y « J

file in native filesystem
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Hadoop Software Components

« Layering Hadoop on top of native OS produces a deep
software stack

Hadoop applications — Access a 2TB file in HDFS...

Hadoop framework

HDFS global filesystem — Access many 64MB HDFS blocks...
- Java virtual machine

Native operating system (e.g., Linux) — Access native file

Native filesystem (e.g., ext4) — Access many 16kB native blocks
Hardware (disks)

« How well does this work together?
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Search Benchmark

Used many synthetic programs
to characterize Hadoop

Focus here on large search
benchmark (i.e. distributed grep)

« Simple to understand
- Easy to show contributions

Partition input data across all
nodes in HDFS (10GB / node)

Split search operation into
thousands of map / reduce tasks

 1task per HDFS block
« Simplifies scheduling
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« Map phase (one task per node)

« Read input data from HDFS
(from local disk)
* Inspect each value for match

If match, emit key/value pair for
later

Excessive matches will spill from
RAM to scratch disk

« Reduce phase

* Pull data from map nodes for
search matches

+ Write output data to HDFS (to
local disk)
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Search Benchmark

- Desired behavior
 Disk bound, not CPU bound

« Map task
« Read data from HDFS disk continuously

« Write matching values to scratch disk periodically

- What is the actual behavior of this test?
* Average HDFS disk utilization: 30%

* Average processor utilization: 60%

« Why so low?
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Problem — Periodic Access

Map phase of search benchmark —Scratch Disk =HDES Disk =—CPU

Scratch disk rarely used
« Search hits are rare
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Processor utilized continuously,
but HDFS disk is not!

 Periodic access pattern

Percent Utilization

Cause of idle HDFS disk
« Delay inissuing and starting new tasks

Must start new tasks frequently

« Each task only processes a single 64MB
HDFS block (simplifies scheduling)
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Fix — Accelerating Task Startup

- Fast Heartbeat

« Default: Clients send heartbeat every 3 seconds to report status +
request new work

 Change: Decrease interval to 0.3 seconds

* JVM Re-use
« Default: Clients start new JVM for every task
 Change: Re-use existing JVM

* Large Tasks
« Default: Clients process 64MB of data per task
« Change: Clients process 5GB of data per task
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Fix — Accelerating Task Startup
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Bl ExecutionTime (s)  ==HDFS Disk Utilization (%)

Default Fast JVMReuse Large Combined
Heartbeat Tasks

Optimization

HDFS Disk Utilization (%)
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Search Benchmark

Combine all optimizations

together —Scratch Disk ==HDFS Disk =—CPU

100 ‘W

o0 \/‘\vr’\/\/\vl\/\/\/

HDFS disk access is now
streaming, not periodic

40
20
0

 Higher CPU usage
(for more bandwidth)

Percent Utilization

Now we're using the disk
continuously and heavily,
but are we using it
efficiently?
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Spinning Disks

- Data-intensive computing clusters use hard drives

* Flash memory (SSDs) are too expensive for bulk storage

« How do | use a spinning disk efficiently?

« Minimize seeks
===\Nrite Bandwidth ===Read Bandwidth

120 /

100
8o - \

6o Operate in this region
40 . . : : for high efficiency

10 20 30 40 50 60

- Large requests (streaming)

Average Bandwidth (MB/s)

Sequential Run Length (MB)
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Hidden Dependencies

« Hadoop should be very “friendly” to spinning disks
« HDFS uses large blocks (64MB) that can minimize seeks

- HDFS uses streaming access patterns

 Hidden challenge

« HDFS relies on the native OS disk scheduler and filesystem
(Linux and exts4 or XFS, FreeBSD and UFS2, etc...)

« Native OS has control over
« Disk allocation (affects fragmentation)
« Disk scheduling (affects sharing between multiple clients)
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Problem — Disk Scheduling

Aggregate Write Bandwidth

o

« Testing concurrent writers in Hadoop
* 1-4 writers per node

o o
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« Concurrent readers show similar behavior
+ Results from FreeBSD 7.2 /| UFS2
« Other OS / filesystems show similar behavior
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» As concurrent writers increase
+ Aggregate bandwidth drops
« Random seeks become frequent
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* Big problem! Concurrent access is common
* Replication
« Multiple tasks over multiple CPU cores

Avg Run Length




Problem — Fragmentation

Read Bandwidth - 1 Reader

o

 Minimal fragmentation when
only 1 writer is using disk
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« Fragmentation increases with
multiple writers

 Poor placement decisions

=3 Non-Sequential
mm Sequential

« Filesystem is only attempting to
maintain small extents (128kB) Number of Prior Writers

Percentage of Accesses

Average Run Length Before Seeking
m T T T

* Fine for general purpose, but...

 For Hadoop, we would like
massive extents! (64MB)

Avg Run Length (kB)

Number of Prior Writers
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Fix — HDFS-Level Scheduling

Fix both problems by making HDFS
smarter

+ Present requests to OS in the order we
want them processed

Buffer pending requests in memory and
schedule them (per disk) at a large 64MB
granularity

« From perspective of OS, only one client
is accessing each disk

Benefits both disk scheduling (shown)
and fragmentation (not shown)
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Non-Portable Optimizations

« Chose HDFS-level scheduling to maintain portability
« What if we didn't care about that goal?

+ Reduce disk fragmentation

« OS hints

« fallocate() — Pre-allocate 64MB block in exts or XFS filesystem without
immediately providing data. Linux-only

« Only support certain filesystems
« Custom configure filesystem to use large extents

« Reduce CPU overhead - Cache bypass

« O_DIRECT to transfer data from disk to user-space buffer, bypassing
cache

* Not supported in Java (would need to use Java Native Interface)
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Hadoop Portability

« Classic notion of software portability
* Does the application run on multiple platforms?

- Better (broader) notion of portability
 Does the application perform well on multiple platforms?

- HDFS is (only) portable in the original sense

* Its performance is highly dependent on the behavior of
underlying software layers

« Example: Concurrent access stresses OS disk scheduler /
allocator, which was designed for general-purpose workloads
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Conclusions

+ Hadoop framework is complicated
« Black-box design hides bottlenecks from user-level profiling
< Example: Periodic hardware utilization

« Impact on current debate (Parallel Databases vs MapReduce)
- Parallel databases are hard to tune — authors spent significant effort

« If a similar effort had been expended on optimizing Hadoop, the
performance “gap” would narrow significantly

« Hadoop architectural improvements
« Task dispatching —increase resource utilization
« HDFS-level scheduling — reduce disk seeks due to scheduling / fragmentation

Boost application performance
Improve node efficiency - More computation with the same hardware

March 30th, 2010 ISPASS 2010




_
_




