The Hadoop Distributed Filesystem:
Balancing Portability and Performance

Jeffrey Shafer, Scott Rixner, Alan L. Cox — Rice University

+ Open source MapReduce framework

« Scalable way to perform data-intensive computation on a
commodity cluster computer

* Inspired by Google’s web indexing framework

+ Designed for portability
« Written in Java
« Runs on Linux, FreeBSD, Solaris, OS/X, Windows, ...
« Uses native filesystems to store data: exts4, XFS, UFS2, NTFS, ...

* In widespread use today
« Amazon, Facebook, Microsoft Bing, Yahoo, ...

March 30th, 2010 ISPASS 2010

« Large clusters are built from commodity hardware
+ x86 processors, SATA disks, Ethernet
* Yahoo cluster

* 4000 nodes (32000 total CPU cores)

* 4 1TB disks per node (16PB total storage)

+ Hadoop software ties the cluster together

« Scheduling — Distribute jobs across cluster
« Storage — User-level filesystem for applications

« Reliability — Data replication, re-spawning failed jobs

March 30th, 2010 ISPASS 2010

Hadoop Performance — Slow?

* Widely publicized paper in SR T
2009 compared Hadoop
performance against parallel
databases for similar
workloads?

Claim: Parallel databases are

2-3 times faster than
MapReduce 1Nodes 10Nodes 25Nodes 50 Nodes 100 Nodes
| I vertica [B] BMS X[~ Hadoop|

« "The MapReduce model on
multi-thousand node clusters
is a brute force solution”

(1) A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. Dewitt, S. Madden, and M. Stonebraker,
"A Comparison of Approaches to Large-Scale Data Analysis,” SIGMOD 2009

March 30th, 2010 4 ISPASS 2010

Ongoing Debate

 Debate in paper focuses on best high-level programming style
« MapReduce or Parallel Database?
« Assumption: High-level differences are causing the performance gap

- Different hypothesis

 Performance gap caused by low-level Hadoop implementation
bottlenecks

 Data-intensive computing — Is Hadoop using the storage system
efficiently?

« Today’s talk:
« Explore the low-level implementation of Hadoop
+ Analyze the interaction between Hadoop and storage
* Fix performance bottlenecks

March 30th, 2010 ISPASS 2010

Outline

Hadoop Architecture

Hadoop Characterization

Hadoop Optimizations

Conclusions

Hadoop Distributed Filesystem (HDFS)

* Global filesystem used by Hadoop applications
* Clone of Google Filesystem (GFS) 3
* Any client can access any file anywhere in the cluster

« Simple access semantics: Write-once, read-many

« Each (large) HDFS file composed of multiple 64MB blocks
+ Each block can be saved to any node in the cluster

« Each block can be replicated to many nodes for redundancy

« Clients prefer to access data from local nodes (when given a
choice)

(3) Ghemawat, S., Gobioff, H., and S. Leung, “The Google File System”, SOSP 2003

March 30th, 2010 7 ISPASS 2010

Hadoop Distributed Filesystem (HDFS)

- NameNode

Stores filesystem Control Node

namespace -‘ e

Stores mapping from
filename to HDFS block(s)

Coordinates allocation and Network Switch
replication i

Single point of failure ‘
Node Node Node

+ DataNode

» Store HDFS blocks (64MB)
HDFS HDFS HDFS
+ Each block is independent Disk Disk Disk
o Y N« Y « J

file in native filesystem

March 30th, 2010 ISPASS 2010

Hadoop Software Components

« Layering Hadoop on top of native OS produces a deep
software stack

Hadoop applications — Access a 2TB file in HDFS...

Hadoop framework

HDFS global filesystem — Access many 64MB HDFS blocks...
- Java virtual machine

Native operating system (e.g., Linux) — Access native file

Native filesystem (e.g., ext4) — Access many 16kB native blocks
Hardware (disks)

« How well does this work together?

March 30th, 2010 ISPASS 2010

Outline

Hadoop Architecture

Hadoop Characterization

Hadoop Optimizations

Conclusions

10 March 30th, 2010 ISPASS 2010

Search Benchmark

Used many synthetic programs
to characterize Hadoop

Focus here on large search
benchmark (i.e. distributed grep)

« Simple to understand
- Easy to show contributions

Partition input data across all
nodes in HDFS (10GB / node)

Split search operation into
thousands of map / reduce tasks

 1task per HDFS block
« Simplifies scheduling

March 30th, 2010

« Map phase (one task per node)

« Read input data from HDFS
(from local disk)
* Inspect each value for match

If match, emit key/value pair for
later

Excessive matches will spill from
RAM to scratch disk

« Reduce phase

* Pull data from map nodes for
search matches

+ Write output data to HDFS (to
local disk)

ISPASS 2010

Search Benchmark

- Desired behavior
 Disk bound, not CPU bound

« Map task
« Read data from HDFS disk continuously

« Write matching values to scratch disk periodically

- What is the actual behavior of this test?
* Average HDFS disk utilization: 30%

* Average processor utilization: 60%

« Why so low?

March 30th, 2010 ISPASS 2010

Problem — Periodic Access

Map phase of search benchmark —Scratch Disk =HDES Disk =—CPU

Scratch disk rarely used
« Search hits are rare

[
o
o

80
60
40
20

0

Processor utilized continuously,
but HDFS disk is not!

 Periodic access pattern

Percent Utilization

Cause of idle HDFS disk
« Delay inissuing and starting new tasks

Must start new tasks frequently

« Each task only processes a single 64MB
HDFS block (simplifies scheduling)

March 30th, 2010 ISPASS 2010

Fix — Accelerating Task Startup

- Fast Heartbeat

« Default: Clients send heartbeat every 3 seconds to report status +
request new work

 Change: Decrease interval to 0.3 seconds

* JVM Re-use
« Default: Clients start new JVM for every task
 Change: Re-use existing JVM

* Large Tasks
« Default: Clients process 64MB of data per task
« Change: Clients process 5GB of data per task

March 30th, 2010 ISPASS 2010

Fix — Accelerating Task Startup

A
Q£
()
£
|_
c
Re,
e
=
9
()
X
Ll

March 30th, 2010

Bl ExecutionTime (s) ==HDFS Disk Utilization (%)

Default Fast JVMReuse Large Combined
Heartbeat Tasks

Optimization

HDFS Disk Utilization (%)

ISPASS 2010

Search Benchmark

Combine all optimizations

together —Scratch Disk ==HDFS Disk =—CPU

100 ‘W

o0 \/‘\vr’\/\/\vl\/\/\/

HDFS disk access is now
streaming, not periodic

40
20
0

 Higher CPU usage
(for more bandwidth)

Percent Utilization

Now we're using the disk
continuously and heavily,
but are we using it
efficiently?

March 30th, 2010 ISPASS 2010

Spinning Disks

- Data-intensive computing clusters use hard drives

* Flash memory (SSDs) are too expensive for bulk storage

« How do | use a spinning disk efficiently?

« Minimize seeks
===\Nrite Bandwidth ===Read Bandwidth

120 /

100
8o - \

6o Operate in this region
40 . . : : for high efficiency

10 20 30 40 50 60

- Large requests (streaming)

Average Bandwidth (MB/s)

Sequential Run Length (MB)

March 30th, 2010 ISPASS 2010

Hidden Dependencies

« Hadoop should be very “friendly” to spinning disks
« HDFS uses large blocks (64MB) that can minimize seeks

- HDFS uses streaming access patterns

 Hidden challenge

« HDFS relies on the native OS disk scheduler and filesystem
(Linux and exts4 or XFS, FreeBSD and UFS2, etc...)

« Native OS has control over
« Disk allocation (affects fragmentation)
« Disk scheduling (affects sharing between multiple clients)

March 30th, 2010 ISPASS 2010

Problem — Disk Scheduling

Aggregate Write Bandwidth

o

« Testing concurrent writers in Hadoop
* 1-4 writers per node

o o
(=]

« Concurrent readers show similar behavior
+ Results from FreeBSD 7.2 /| UFS2
« Other OS / filesystems show similar behavior

N
(=}

Bandwidth (MB/s)
B
o

o

» As concurrent writers increase
+ Aggregate bandwidth drops
« Random seeks become frequent

[y
o
(@]
X

= Non-Sequential

* Run length plummets mm Sequential
2 3 4

- Drive operates in inefficient region Number of Writers

]
()]
[92]
(%]
[0}
|9
9]
P
[re
o
()]
()]
©
-
c
(]
E
[0}
a.

Average Run Length Before Seeking

l’——
1

3 4

Number of Writers
March 30th, 2010 ISPASS 2010

kB)

* Big problem! Concurrent access is common
* Replication
« Multiple tasks over multiple CPU cores

Avg Run Length

Problem — Fragmentation

Read Bandwidth - 1 Reader

o

 Minimal fragmentation when
only 1 writer is using disk

a0
o

N
(=}

Bandwidth (MB/s)
N
o

o

« Fragmentation increases with
multiple writers

 Poor placement decisions

=3 Non-Sequential
mm Sequential

« Filesystem is only attempting to
maintain small extents (128kB) Number of Prior Writers

Percentage of Accesses

Average Run Length Before Seeking
m T T T

* Fine for general purpose, but...

 For Hadoop, we would like
massive extents! (64MB)

Avg Run Length (kB)

Number of Prior Writers
March 30th, 2010 ISPASS 2010

Fix — HDFS-Level Scheduling

Fix both problems by making HDFS
smarter

+ Present requests to OS in the order we
want them processed

Buffer pending requests in memory and
schedule them (per disk) at a large 64MB
granularity

« From perspective of OS, only one client
is accessing each disk

Benefits both disk scheduling (shown)
and fragmentation (not shown)

March 30th, 2010

Percentage of Accesses

N B O
o O

Bandwidth (MB/s)

Aggregate Write Bandwidth

o O
T T

1 2 3 4
Number of Writers

= Non-Sequential
mm Sequential

1 2 3 4
Number of Writers

5 Average Run Length Before Seeking

2 3
Number of Writers

ISPASS 2010

Non-Portable Optimizations

« Chose HDFS-level scheduling to maintain portability
« What if we didn't care about that goal?

+ Reduce disk fragmentation

« OS hints

« fallocate() — Pre-allocate 64MB block in exts or XFS filesystem without
immediately providing data. Linux-only

« Only support certain filesystems
« Custom configure filesystem to use large extents

« Reduce CPU overhead - Cache bypass

« O_DIRECT to transfer data from disk to user-space buffer, bypassing
cache

* Not supported in Java (would need to use Java Native Interface)

March 30th, 2010 ISPASS 2010

Outline

Hadoop Architecture

Hadoop Characterization

Hadoop Optimizations

Conclusions

23 March 30th, 2010 ISPASS 2010

Hadoop Portability

« Classic notion of software portability
* Does the application run on multiple platforms?

- Better (broader) notion of portability
 Does the application perform well on multiple platforms?

- HDFS is (only) portable in the original sense

* Its performance is highly dependent on the behavior of
underlying software layers

« Example: Concurrent access stresses OS disk scheduler /
allocator, which was designed for general-purpose workloads

March 30th, 2010 ISPASS 2010

Conclusions

+ Hadoop framework is complicated
« Black-box design hides bottlenecks from user-level profiling
< Example: Periodic hardware utilization

« Impact on current debate (Parallel Databases vs MapReduce)
- Parallel databases are hard to tune — authors spent significant effort

« If a similar effort had been expended on optimizing Hadoop, the
performance “gap” would narrow significantly

« Hadoop architectural improvements
« Task dispatching —increase resource utilization
« HDFS-level scheduling — reduce disk seeks due to scheduling / fragmentation

Boost application performance
Improve node efficiency - More computation with the same hardware

March 30th, 2010 ISPASS 2010

_
_

