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Abstract—Hadoop is a popular open-source implementation
of MapReduce for the analysis of large datasets. To manage
storage resources across the cluster, Hadoop uses a distributed
user-level filesystem. This filesystem — HDFS — is written in
Java and designed for portability across heterogeneous hardware
and software platforms. This paper analyzes the performance
of HDFS and uncovers several performance issues. First,ar-
chitectural bottlenecks exist in the Hadoop implementation that
result in inefficient HDFS usage due to delays in scheduling
new MapReduce tasks. Second,portability limitations prevent
the Java implementation from exploiting features of the native
platform. Third, HDFS implicitly makes portability assumptions
about how the native platform manages storage resources, even
though native filesystems and I/O schedulers vary widely in
design and behavior. This paper investigates the root causes
of these performance bottlenecks in order to evaluate tradeoffs
between portability and performance in the Hadoop distributed
filesystem.

I. I NTRODUCTION

The assimilation of computing into our daily lives is
enabling the generation of data at unprecedented rates. In
2008, IDC estimated that the “digital universe” contained 486
exabytes of data [2]. The MapReduce programming model
has emerged as a scalable way to perform data-intensive
computations on commodity cluster computers [8], [9]. The
success of MapReduce has inspired the creation of Hadoop,
a popular open-source implementation. Written in Java for
cross-platform portability, Hadoop is employed today by a
wide range of commercial and academic users for backend
data processing. A key component of Hadoop is the Hadoop
Distributed File System (HDFS), which is used to store all
input and output data for applications.

The efficiency of the MapReduce model has been ques-
tioned in recent research contrasting it with the parallel
database paradigm for large-scale data analysis. Typically,
Hadoop is used as representative of the MapReduce model
because proprietary (e.g., Google-developed) implementations
with potentially higher performance are not publicly avail-
able. In one study, Hadoop applications performed poorly
in experiments when compared to similar programs using
parallel databases [18], [22]. However, this work did not
perform the profiling necessary to distinguish the fundamental
performance of the MapReduce programming model from
a specific implementation. We find that it is actually the
implementation of the Hadoop storage system that degrades
performance significantly.

This paper is the first to analyze the interactions between
Hadoop and storage. We describe how the user-level Hadoop
filesystem, instead of efficiently capturing the full performance
potential of the underlying cluster hardware, actually degrades
application performance significantly. The specific bottlenecks
in HDFS can be classified into three categories:

Software Architectural Bottlenecks — HDFS is not
utilized to its full potential due to scheduling delays in the
Hadoop architecture that result in cluster nodes waiting for
new tasks. Instead of using the disk in a streaming manner,
the access pattern is periodic. Further, even when tasks are
available for computation, the HDFS client code, particularly
for file reads, serializes computation and I/O instead of de-
coupling and pipelining those operations. Data prefetching is
not employed to improve performance, even though the typical
MapReduce streaming access pattern is highly predictable.

Portability Limitations — Some performance-enhancing
features in the native filesystem are not available in Java in
a platform-independent manner. This includes options such
as bypassing the filesystem page cache and transferring data
directly from disk into user buffers. As such, the HDFS
implementation runs less efficiently and has higher processor
usage than would otherwise be necessary.

Portability Assumptions — The classic notion of software
portability is simple: does the application run on multiple
platforms? But, a broader notion of portability is: does the
application perform well on multiple platforms? While HDFS
is strictly portable, its performance is highly dependent on the
behavior of underlying software layers, specifically the OSI/O
scheduler and native filesystem allocation algorithm.

Here, we quantify the impact and significance of these
HDFS bottlenecks. Further, we explore potential solutionsand
examine how they impact portability and performance. These
solutions include improved I/O scheduling, adding pipelining
and prefetching to both task scheduling and HDFS clients, pre-
allocating file space on disk, and modifying or eliminating the
local filesystem, among other methods.

MapReduce systems such as Hadoop are used in large-
scale deployments. Eliminating HDFS bottlenecks will not
only boost application performance, but also improve overall
cluster efficiency, thereby reducing power and cooling costs
and allowing more computation to be accomplished with the
same number of cluster nodes.

In this paper, Section II describes Hadoop and its distributed



filesystem, while Section III characterizes its current perfor-
mance. Section IV discusses potential performance improve-
ments to Hadoop and their portability implications. Section V
discusses related work, and Section VI concludes this paper.

II. BACKGROUND

Hadoop [3] is an open source framework that implements
the MapReduce parallel programming model [8]. Hadoop is
composed of a MapReduce engine and a user-level filesystem
that manages storage resources across the cluster. For porta-
bility across a variety of platforms — Linux, FreeBSD, Mac
OS/X, Solaris, and Windows — both components are written
in Java and only require commodity hardware.

A. MapReduce Engine

In the MapReduce model, computation is divided into a
map function and areducefunction. The map function takes
a key/value pair and produces one or more intermediate
key/value pairs. The reduce function then takes these interme-
diate key/value pairs and merges all values corresponding to a
single key. The map function can run independently on each
key/value pair, exposing enormous amounts of parallelism.
Similarly, the reduce function can run independently on each
intermediate key, also exposing significant parallelism.

In Hadoop, a centralizedJobTrackerservice is responsible
for splitting the input data into pieces for processing by
independent map and reduce tasks, scheduling each task on
a cluster node for execution, and recovering from failures by
re-running tasks. On each node, aTaskTrackerservice runs
MapReduce tasks and periodically contacts the JobTracker to
report task completions and request new tasks. By default,
when a new task is received, a new JVM instance will be
spawned to execute it.

B. Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) provides
global access to files in the cluster [4], [23]. For maximum
portability, HDFS is implemented as a user-level filesystemin
Java which exploits the native filesystem on each node, such
as ext3 or NTFS, to store data. Files in HDFS are divided into
large blocks, typically 64MB, and each block is stored as a
separate file in the local filesystem.

HDFS is implemented by two services: theNameNode
andDataNode. TheNameNodeis responsible for maintaining
the HDFS directory tree, and is a centralized service in
the cluster operating on a single node. Clients contact the
NameNode in order to perform common filesystem operations,
such as open, close, rename, and delete. The NameNode does
not store HDFS data itself, but rather maintains a mapping
between HDFS file name, a list of blocks in the file, and the
DataNode(s) on which those blocks are stored.

In addition to a centralized NameNode, all remaining cluster
nodes provide theDataNodeservice. Each DataNode stores
HDFS blocks on behalf of local or remote clients. Each block
is saved as a separate file in the node’s local filesystem.
Because the DataNode abstracts away details of the local

storage arrangement, all nodes do not have to use the same
local filesystem. Blocks are created or destroyed on DataNodes
at the request of the NameNode, which validates and processes
requests from clients. Although the NameNode manages the
namespace, clients communicate directly with DataNodes in
order to read or write data at the HDFS block level.

Hadoop MapReduce applications use storage in a manner
that is different from general-purpose computing [11]. First,
the data files accessed are large, typically tens to hundreds
of gigabytes in size. Second, these files are manipulated
via streaming access patterns typical of batch-processing
workloads. When reading files, large data segments (several
hundred kilobytes or more) are retrieved per operation, with
successive requests from the same client iterating througha
file region sequentially. Similarly, files are also written in a
sequential manner.

This emphasis on streaming workloads is evident in the
design of HDFS. First, a simple coherence model (write-once,
read-many) is used that does not allow data to be modified
once written. This is well suited to the streaming access
pattern of target applications, and improves cluster scaling
by simplifying synchronization requirements. Second, each
file in HDFS is divided into large blocks for storage and
access, typically 64MB in size. Portions of the file can be
stored on different cluster nodes, balancing storage resources
and demand. Manipulating data at this granularity is efficient
because streaming-style applications are likely to read orwrite
the entire block before moving on to the next. In addition, this
design choice improves performance by decreasing the amount
of metadata that must be tracked in the filesystem, and allows
access latency to be amortized over a large volume of data.
Thus, the filesystem is optimized for high bandwidth insteadof
low latency. This allows non-interactive applications to process
data at the fastest rate.

To read an HDFS file, client applications simply use a
standard Java file input stream, as if the file was in the
native filesystem. Behind the scenes, however, this stream
is manipulated to retrieve data from HDFS instead. First,
the NameNode is contacted to request access permission. If
granted, the NameNode will translate the HDFS filename into
a list of the HDFS block IDs comprising that file and a list
of DataNodes that store each block, and return the lists to
the client. Next, the client opens a connection to the “closest”
DataNode (based on Hadoop rack-awareness, but optimally the
same node) and requests a specific block ID. That HDFS block
is returned over the same connection, and the data delivered
to the application.

To write data to HDFS, client applications see the HDFS
file as a standard output stream. Internally, however, stream
data is first fragmented into HDFS-sized blocks (64MB) and
then smaller packets (64kB) by the client thread. Each packet
is enqueued into a FIFO that can hold up to 5MB of data, thus
decoupling the application thread from storage system latency
during normal operation. A second thread is responsible for
dequeuing packets from the FIFO, coordinating with the
NameNode to assign HDFS block IDs and destinations, and



Fig. 1. Cluster Setup

transmitting blocks to the DataNodes (either local or remote)
for storage. A third thread manages acknowledgements from
the DataNodes that data has been committed to disk.

C. HDFS Replication

For reliability, HDFS implements an automatic replication
system. By default, two copies of each block are stored by
different DataNodes in the same rack and a third copy is stored
on a DataNode in a different rack (for greater reliability).Thus,
in normal cluster operation, each DataNode is servicing both
local and remote clients simultaneously. HDFS replicationis
transparent to the client application. When writing a block,a
pipeline is established whereby the client only communicates
with the first DataNode, which then echos the data to a second
DataNode, and so on, until the desired number of replicas have
been created. The block is only finished when all nodes in this
replication pipeline have successfully committed all datato
disk. DataNodes periodically report a list of all blocks stored to
the NameNode, which will verify that each file is sufficiently
replicated and, in the case of failure, instruct DataNodes to
make additional copies.

III. PERFORMANCECHARACTERIZATION

In this section, the Hadoop distributed filesystem is evalu-
ated in order to identify bottlenecks that degrade application
performance.

A. Experimental Setup

For performance characterization, a 5-node Hadoop cluster
was configured, as shown in Figure 1. The first 4 nodes pro-
vided both computation (as MapReduce clients) and storage
resources (as DataNode servers), and the 5th node served
as both the MapReduce scheduler and NameNode storage
manager. Each node was a 2-processor Opteron server running
at 2.4 GHz or above with 4GB of RAM and a gigabit Ethernet
NIC. All nodes used FreeBSD 7.2, Hadoop framework 0.20.0,
and Java 1.6.0. The first four nodes were configured with
two Seagate Barracuda 7200.11 500GB hard drives. One
disk stored the operating system, Hadoop application, and
application scratch space, while the second disk stored only
HDFS data. All disks used the default UFS2 filesystem for
FreeBSD with a 16kB block size and 2kB fragment size.
Unless otherwise stated, Hadoop replication was disabled.
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Fig. 2. Raw Hard Drive Read and Write Bandwidth from AIO Test With
Random Seek Everyn Megabytes

To characterize the Hadoop framework, a variety of test
applications were installed as shown in Table I. This test suite
includes a simple HDFS synthetic writer and reader doing
sequential streaming access, an HDFS writer that generates
random binary numbers or text strings and writes them to
the disk in a sequential fashion, a simple integer sort, and a
simple search for a rare text pattern in a large file. Hadoop
is still a young platform, and the few complex applications
used in industry are proprietary and thus unavailable. For
comparison purposes, a program written in C was used to
perform asynchronous I/O (AIO) on the raw disk to determine
the best-case performance, independent of any Hadoop, Java,
or filesystem-specific overheads.

B. Raw Disk Performance

To place an upper bound on Hadoop performance, the raw
bandwidth of the commodity hard drive used in the cluster
was measured. To quantify the performance impact of seeks,
the AIO program (running on a raw disk, not inside Hadoop)
was configured to perform long duration sequential reads and
writes, with a seek to a random aligned location everyn
megabytes. This represents the best-case Hadoop behavior
where a large HDFS block ofn megabytes is streamed from
disk, and then the drive seeks to a different location to retrieve
another large block. The outer regions of the drive (identified
by low logical addresses) were used to obtain peak bandwidth.
As shown in Figure 2, the drive performance approaches its
peak bandwidth when seeks occur less often than once every
32MB of sequential data accessed. Thus, the HDFS design
decision to use large 64MB blocks is quite reasonable and,
assuming that the filesystem maintains file contiguity, should
enable high disk bandwidth.

C. Software Architectural Bottlenecks

Hadoop application performance suffers due to architectural
bottlenecks in the way that applications use the Hadoop
filesystem. Ideally, MapReduce applications should manipulate
the disk using streaming access patterns. The application
framework should allow for data to be read or written to the
disk continuously, and overlap computation with I/O. Many
simple applications with low computation requirements do not



Code Program Data Size Notes
S-Wr Synthetic Write 10GB / node Hadoop sequential write
S-Rd Synthetic Read 10GB / node Hadoop sequential read
Rnd-Text Random Text Writer 10GB / node Hadoop sequential write
Rnd-Bin Random Binary Writer 10GB / node Hadoop sequential write
Sort Simple Sort 40GB / cluster Hadoop sort of integer data
Search Simple Search 40GB / cluster Hadoop search of text data for rare string

AIO-Wr Synthetic Write 10GB / node Native C Program - Asynchronous I/O
AIO-Rd Synthetic Read 10GB / node Native C program - Asynchronous I/O

TABLE I
APPLICATION TEST SUITE
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Fig. 3. Simple Search Processor and Disk Utilization (% of TimeDisk Had
1 or More Outstanding Requests)

achieve this ideal operating mode. Instead, they utilize the disk
in a periodic fashion, decreasing performance.

The behavior of the disk and processor utilization over time
for the simple search benchmark is shown in Figure 3. Disk
utilization was measured as the percentage of time that the
disk had at least one I/O request outstanding. This profiling
did not measure the relative efficiency of disk accesses (which
is influenced by excessive seeks and request size), but simply
examined whether or not the disk was kept sufficiently busy
with outstanding service requests. Here, the system is not ac-
cessing the disk in a continuous streaming fashion as desired,
even though there are ample processor resources still available.
Rather, the system is reading data in bursts, processing it (by
searching for a short text string in each input line), and then
fetching more data in a periodic manner. This behavior is also
evident in other applications such as the sort benchmark, not
shown here.

The overall system impact of this periodic behavior is
shown in Figure 4, which presents the average HDFS disk
and processor utilization for each application in the test suite.
The AIO test programs (running as native applications, not in
Hadoop) kept the disk saturated with I/O requests nearly all
the time (97.5%) with very low processor utilization (under
3.5%). Some Hadoop programs (such as S-Wr and Rnd-Bin)
also kept the disk equivalently busy, albeit at much higher
processor usage due to Hadoop and Java virtual machine
overheads. In contrast, the remaining programs have poor
resource utilization. For instance, the search program accesses
the disk less than 40% of the time, and uses the processors

less than 60% of the time.
This poor efficiency is a result of the way applications

are scheduled in Hadoop, and is not a bottleneck caused by
HDFS. By default, the test applications like search and sort
were divided into hundreds of map tasks that each process
only a single HDFS block or less before exiting. This can
speed recovery from node failure (by reducing the amount of
work lost) and simplify cluster scheduling. It is easy to take
a map task that accesses a single HDFS block and assign it
to the node that contains the data. Scheduling becomes more
difficult, however, when map tasks access a region of multiple
HDFS blocks, each of which could reside on different nodes.
Unfortunately, the benefits of using a large number of small
tasks come with a performance price that is particularly high
for applications like the search test that complete tasks quickly.
When a map task completes, the node can be idle for several
seconds until the TaskTracker polls the JobTracker for more
tasks. By default, the minimum polling interval is 3 seconds
for a small cluster, and increases with cluster size. Then, the
JobTracker runs a scheduling algorithm and returns the next
task to the TaskTracker. Finally, a new Java virtual machine
(JVM) is started, after which the node can resume application
processing.

This bottleneck is not caused by the filesystem, but does
affect how the filesystem is used. Increasing the HDFS block
size to 128MB, 256MB, or higher — a commonly-proposed
optimization [17], [18] — indirectly improves performancenot
because it alleviates any inefficiency in HDFS but because it
reduces the frequency at which a node is idle and awaiting
scheduling. Another option, over-subscribing the clusterby
assigning many more Map and Reduce tasks than there are
processors and disks in the cluster nodes, may also mitigate
this problem by overlapping computation and I/O from differ-
ent tasks. But, this technique risks degrading performancein
a different manner by increasing I/O contention from multiple
clients, a problem discussed further in Section III-E.

To more directly attack the performance bottleneck, Hadoop
can be configured to re-use the same JVM for multiple tasks
instead of starting a new JVM each time. In the search test,
this increased performance by 27%, although disk utilization
was still below 50%. Further, the amount of work done by
each map task can be adjusted. Making each map task process
5GB of data instead of 64MB before exiting improved search
performance by 37% and boosted disk utilization to over 68%.
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These quick tests show that HDFS — the focus of this paper
— is not the cause of this performance bottleneck. Rather,
further work in the rest of the Hadoop framework is needed.
Solutions such as pipelining and prefetching tasks from the
JobTracker in advance may help hide scheduling latency.

Even when tasks are available for processing and each
task is operating over multiple HDFS blocks located on
the same node, a bottleneck still exists because the HDFS
client implementation is highly serialized for data reads.As
discussed in Section II, there is no pipelining to overlap
application computation with I/O. The application must wait
on the I/O system to contact the NameNode, contact the
DataNode, and transfer data before processing. This latency
is greater on large clusters with busy NameNodes, or in cases
where the data being accessed is not on the same node.
Similarly, the I/O system must wait for the application to
complete processing before receiving another request. Beyond
the lack of pipelining, there is also no data prefetching in the
system, despite the fact that MapReduce applications access
data in a predictable streaming fashion. Only metadata is
prefetched, specifically the mapping between HDFS filename
and block IDs. Rather than contact the NameNode each time a
new block ID is required, the client caches the next 10 blocks
in the file with each request.

D. Portability Limitations

The Hadoop framework and filesystem impose a significant
processor overhead on the cluster. While some of this over-
head is inherent in providing necessary functionality, other
overhead is incurred due to the design goal of creating a
portable MapReduce implementation. These are referred to as
Portability Limitations.

An example of the total overhead incurred is shown in
Figure 4. The asynchronous I/O write (AIO-Wr) test program

— written in C and accessing the raw disk independent of
the filesystem — takes less than 10% of the processor during
operation. But, the synthetic writer (S-Wr) test program —
written in Java and running in Hadoop — takes over 50%
of the processor to write data to disk in a similar fashion
with equivalent bandwidth. That overhead comes from four
places: Java, HDFS implementation, the local filesystem, and
the filesystem page cache. While the first two overheads are
inherent in the Hadoop implementation, the last two are not.

As discussed in Section II, the Hadoop DataNode uses a
local filesystem to store data, and each HDFS block exists
as a separate file in the native filesystem. While this method
makes Hadoop simple to install and portable, it imposes a
computation overhead that is present regardless of the specific
filesystem used. The filesystem takes processor time to make
data allocation and placement decisions, while the filesystem
page cache consumes both processor and memory resources
to manage.

To quantify the processor resources consumed by the filesys-
tem and cache, a synthetic Java program was used to read and
write 10GB files to disk in a streaming fashion using 128kB
buffered blocks. The test program incurs file access overheads
imposed by Java but not any Hadoop-specific overheads. It was
executed both on a raw disk and on a large file in the filesystem
in order to compare the overhead of both approaches. Kernel
callgraph profiling was used to attribute overhead to specific
OS functions.

As shown in Table II, using a filesystem has a low processor
overhead. When reading, 4.4% of the processor time was spent
managing filesystem and file cache related functions, and while
writing, 7.2% of the processor time was spent on the same
kernel tasks. This overhead would be lower if additional or
faster processors had been used for the experimental cluster,



Metric Read Write
Raw Filesystem Raw Filesystem

Bandwidth (MB/s) 99.9 98.4 98.1 94.9

Processor (total) 7.4% 13.8% 6.0% 15.6%
Processor (FS+cache) N/A 4.4% N/A 7.2%

TABLE II
PROCESSOROVERHEAD OF DISK AS RAW DEVICE VERSUSDISK WITH

FILESYSTEM AND PAGE CACHE (FS+CACHE)

and higher if additional or faster disks were added to the
cluster.

E. Portability Assumptions

A final class of performance bottlenecks exists in the
Hadoop filesystem that we refer to asPortability Assumptions.
Specifically, these bottlenecks exist because the HDFS imple-
mentation makes implicit assumptions that the underlying OS
and filesystem will behave in an optimal manner for Hadoop.
Unfortunately, I/O schedulers can cause excessive seeks under
concurrent workloads, and disk allocation algorithms can
cause excessive fragmentation, both of which degrade HDFS
performance significantly. These agents are outside the direct
control of HDFS, which runs inside a Java virtual machine
and manages storage as a user-level application.

1) Scheduling:HDFS performance degrades whenever the
disk is shared between concurrent writers or readers. Excessive
disk seeks occur that are counter-productive to the goal of
maximizing overall disk bandwidth. This is a fundamental
problem that affects HDFS running on all platforms. Existing
I/O schedulers are designed for general-purpose workloadsand
attempt to share resources fairly between competing processes.
In such workloads, storage latency is of equal importance
to storage bandwidth; thus, fine-grained fairness is provided
at a small granularity (a few hundred kilobytes or less). In
contrast, MapReduce applications are almost entirely latency
insensitive, and thus should be scheduled to maximize disk
bandwidth by handling requests at a large granularity (dozens
of megabytes or more).

To demonstrate poor scheduling by the operating system, a
synthetic test program in Hadoop was used to write 10GB
of HDFS data to disk in a sequential streaming manner
using 64MB blocks. 1-4 copies of this application were run
concurrently on each cluster node. Each instance writes data to
a separate HDFS file, thus forcing the system to share limited
I/O resources. The aggregate bandwidth achieved by all writers
on a node was recorded, as shown in Figure 5(a). Aggregate
bandwidth dropped by 38% when moving from 1 writer to 2
concurrent writers, and dropped by an additional 9% when a
third writer was added.

This performance degradation occurs because the number
of seeks increases as the number of writers increases and
the disk is forced to move between distinct data streams.
Eventually, non-sequential requests account for up to 50% of
disk accesses, despite the fact that, at the application level,
data is being accessed in a streaming fashion that should facil-
itate large HDFS-sized block accesses (e.g., 64MB). Because

of these seeks, the average sequential run length decreases
dramatically as the number of writers increases. What was
originally a 4MB average run length decreases to less than
200kB with the addition of a second concurrent writer, and
eventually degrades further to approximately 80kB. Such short
sequential runs directly impact overall disk I/O bandwidth, as
seen in Figure 2.

A similar performance issue occurs when HDFS is sharing
the disk between concurrent readers. To demonstrate this, the
same synthetic test program was used. First, a single writer
was used per node to write 4 separate 10GB HDFS files. A
single writer process creates data that is highly contiguous on
disk, as shown by the negligible percentage of seeks in the
previous 1-writer test. Then, 1-4 concurrent synthetic reader
applications were used per node to each read back a different
file from disk.

In this test, the aggregate bandwidth for all readers on a
particular node was recorded, as shown in Figure 5(b). The
aggregate bandwidth dropped by 18% when moving from
1 reader to 2 readers. This is because the number of seeks
increased as the number of readers increased, reaching up to
50% of total disk accesses. This also impacted the average run
length before seeking, which dropped from over 4MB to well
under 200kB as the number of concurrent readers increased.

By default, the FreeBSD systems used for testing employed
a simple elevator I/O scheduler. If the system had used a
more sophisticated scheduler that minimizes seeks, such asthe
Anticipatory Scheduler, this problem may have been masked,
and the limitations of the portable HDFS implementation
hidden. The Anticipatory Scheduler attempts to reduce seeks
by waiting a short period after each request to see if further
sequential requests are forthcoming [13]. If they are, the
requests can be serviced without extra seeks; if not, the disk
seeks to service a different client.

A simple anticipatory scheduler for FreeBSD was config-
ured and tested using concurrent instances of the Hadoop
synthetic writer and reader application. The new scheduler
had no impact on the I/O bandwidth of the test programs.
Profiling revealed that, for the read workload, the scheduler
did improve the access characteristics of the drive. A high
degree of sequential accesses (over 95%) and a large sequential
run length (over 1.5MB) were maintained when moving from
1 to 4 concurrent readers. But, because the drive was often
idle waiting on new read requests from the synchronous
HDFS implementation, overall application bandwidth did not
improve. Profiling also showed that the scheduler had no
impact on the access characteristics of write workloads. This
is expected because the filesystem block allocator is making
decisions before the I/O scheduler. Thus, even if the anticipa-
tory scheduler waits for the next client request, it is oftennot
contiguous in this filesystem and thus not preferred over any
other pending requests.

2) Fragmentation: In addition to poor I/O scheduling,
HDFS also suffers from file fragmentation when sharing a
disk between multiple writers. The maximum possible file
contiguity — the size of an HDFS block — is not preserved
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Fig. 5. Impact of Concurrent Synthetic Writers and Readers on HDFS Drive Access Patterns

by the general-purpose filesystem when making disk allocation
decisions.

To measure file fragmentation on a freshly formatted disk,
1-4 synthetic writer applications were used per node to each
create 10GB files, written concurrently. Next, a single syn-
thetic reader application was used to read back one of the 1-4
files initially created. If the data on disk is contiguous, the
single reader should be able to access it with a minimum of
seeks; otherwise, the file must be fragmented on disk.

The results from this experiment are shown in Figure 6.
Here, file fragmentation occurs whenever multiple writers
use the disk concurrently. When the single reader accesses
data written when only one writer was active, it receives
high bandwidth thanks to a negligible percentage of random
seeks, showing that the data was written to the disk in large
contiguous blocks. However, when the reader accesses data
written when 2 writers were active, read bandwidth drops by
30%. The cause of this drop is an increase in the number
of random seeks, and a corresponding decrease in the average
sequential run length from over 4MB to approximately 250kB.
This trend continues when 3-4 concurrent writers were used,
showing that files suffer from increasing fragmentation as
the number of concurrent writers is increased. The level of
fragmentation here was produced by using a freshly formatted
disk for each experiment. In a Hadoop cluster running for
many months or years, the real-world disk fragmentation

would likely be greater.
The average run lengths shown in Figure 6 for the frag-

mentation test are almost twice as long as the multiple writers
test shown in Figure 5(a). This demonstrates that after a disk
does a seek to service a different writer, it will sometimes jump
back to the previous location to finish writing out a contiguous
cluster. Unfortunately, the filesystem used only attempts to
maintain small clusters (128kB). As such, the overall level
of on-disk file contiguity is still very low compared to what
would be optimal for HDFS.

F. Discussion

As shown previously, concurrent readers and writers de-
grade the performance of the Hadoop filesystem. This effect
is not a rare occurrence in cluster operation that can be disre-
garded. Concurrent disk access is found in normal operation
because of two key elements: multiple map/reduce processes
and data replication.

MapReduce is designed to allow computation tasks to be
easily distributed across a large computer cluster. This same
parallelization technique also allows the exploitation ofmul-
tiple processor cores. In the cluster used for experimentation,
each node had 2 processors, and thus was configured to
run 2 MapReduce processes concurrently. While 2 processes
allowed the test suite to use more computation resources,
the concurrent reads and writes created slowed the overall



1 2 3 4
Number of Prior Writers

0

20

40

60

80
B

a
n
d
w

id
th

 (
M

B
/s

) Read Bandwidth - 1 Reader

1 2 3 4
Number of Prior Writers

0%

25%

50%

75%

100%

P
e
rc

e
n
ta

g
e
 o

f 
A

cc
e
ss

e
s

Access Pattern - HDFS Drive

Non-Sequential
Sequential

1 2 3 4
Number of Prior Writers

0

200

400

600

800

1000

A
v
g
 R

u
n
 L

e
n
g
th

 (
kB

)

4
5

8
6

Average Run Length Before Seeking

Fig. 6. One Hadoop Synthetic Reader Program Accessing Data From
One Synthetic Writer. (Data was Previously Generated With 1-4 Concurrent
Writers)

application execution time. Although it might be reasonable
in this configuration to either install a second HDFS disk or
run only 1 application process per node, this “solution” is not
scalable when cluster nodes are constructed with processors
containing 4, 8, 16, or more cores. It is unreasonable to
either install one disk per core or leave those cores idle
— abandoning the parallelization benefits made possible by
the MapReduce programming style — to bypass performance
problems caused by concurrent disk access. Further, Hadoop
installations often deliberately oversubscribe the cluster by
running more Map or Reduce tasks than there are processors
or disks. This is done in order to reduce system idle time
caused by high latency in scheduling and initiating new tasks
as identified in Section III-C.

In addition to multiple computation processes, concurrent
disk access can also arise due to HDFS data replication.
As previously mentioned, clusters typically operate with a
replication factor of 3 for redundancy, meaning that one copy
of the data is saved locally, one copy is saved on another node
in the same rack, and a third copy is saved on a node in a
distant rack. But, writing data to disk from both local and
remote programs causes concurrent disk accesses.

The effect of a cluster replication factor of 2 on disk
access patterns was tested. The results in Table III show that

Metric Synthetic Synthetic
Write Read

Sequential % 77.9% 70.3%
Non-Sequential % 22.1% 29.7%

Avg. Seq. Run Length 275.2kB 176.8kB

TABLE III
DISK ACCESSCHARACTERISTICS FORSYNTHETIC WRITE AND READ

APPLICATIONS WITH REPLICATION ENABLED

replication is a trivial way to produce concurrent access. The
behavior of the synthetic writer with replication enabled is
highly similar to the behavior of 2 concurrent writers, previ-
ously shown in Figure 5(a). The mix of sequential and random
disk accesses is similar, as is the very small average run length
before seeking. Similar observations for the read test can be
made against the behavior of 2 concurrent readers, previously
shown in Figure 5(b). Thus, the performance degradation from
concurrent HDFS access is present in every Hadoop cluster
using replication.

G. Other Platforms – Linux and Windows

The primary results shown in this paper used HDFS on
FreeBSD 7.2 with the UFS2 filesystem. For comparison
purposes, HDFS was also tested on Linux 2.6.31 using the
ext4 and XFS filesystems and Windows 7 using the NTFS
filesystem, but space limitations necessitate a brief discussion
of results here.

HDFS on Linux suffers from the same performance prob-
lems as on FreeBSD, although the degree varies by filesystem
and test. Concurrent writes on Linux exhibited better perfor-
mance characteristics than FreeBSD. For example, the ext4
filesystem showed a 8% degradation moving between 1 and
4 concurrent writers, while the XFS filesystem showed no
degradation in the same test. This compares to a 47% drop in
FreeBSD as shown in Figure 5(a). In contrast, HDFS on Linux
had worse performance for concurrent reads than FreeBSD.
The ext4 filesystem degraded by 42% moving from 1 to 4 con-
current readers, and XFS degraded by 43%, compared to 21%
on FreeBSD as shown in Figure 5(b). Finally, fragmentation
was reduced on Linux, as the ext4 filesystem degraded by 8%
and the XFS filesystem by 6% when a single reader accessed
files created by 1 to 4 concurrent writers. This compares to a
42% degradation in FreeBSD, as shown in Figure 6.

Hadoop in Windows 7 relies on a Unix emulation layer such
as Cygwin to function. Write bandwidth to disk was acceptable
(approximately 60MB/s), but read bandwidth was very low
(10MB/s or less) despite high disk utilization (in excess of
90%). Although the cause of this performance degradation was
not investigated closely, the behavior is consistent with disk
access patterns using small I/O requests (2kb-4kB) instead
of large requests (64kB and up). Because of these perfor-
mance limitations, Hadoop in Windows is used only for non-
performance-critical application development. All large-scale
deployments of Hadoop in industry use Unix-like operating
systems such as FreeBSD or Linux, which are the focus of
this paper.
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Fig. 7. Impact of Application Disk Scheduling on Concurrent Synthetic Writers and Readers

IV. PERFORMANCE VERSUSPORTABILITY

As characterized in Section III, the portable implementation
of HDFS suffers from a number of bottlenecks caused by lower
levels of the software stack. These problems include:

Disk scheduling— The performance of concurrent readers
and writers suffers from poor disk scheduling, as seen in
Section III-E1. Although HDFS clients access massive files
in a streaming fashion, the framework divides each file into
multiple HDFS blocks (typically 64MB) and smaller packets
(64kB). The request stream actually presented to the disk is
interleaved between concurrent clients at this small granularity,
forcing excessive seeks and degrading bandwidth, and negat-
ing one of the key potential benefits that a large 64MB block
size would have in optimizing concurrent disk accesses.

Filesystem allocation— In addition to poor I/O scheduling,
HDFS also suffers from file fragmentation when sharing a disk
between multiple writers. As discussed in Section III-E2, the
maximum possible file contiguity — the size of an HDFS
block — is not preserved by the general-purpose filesystem
when disk allocation decisions are made.

Filesystem page cache overhead— Managing a filesystem
page cache imposes a computation and memory overhead
on the host system, as discussed in Section III-D. This
overhead is unnecessary because the streaming access patterns
of MapReduce applications have minimal locality that can be
exploited by a cache. Further, even if a particular application

did benefit from a cache, the page cache stores data at the
wrong granularity (4-16kB pages vs 64MB HDFS blocks),
thus requiring extra work to allocate memory and manage
metadata.

To improve the performance of HDFS, there are a variety
of architectural improvements that could be used. In this
section, portable solutions are first discussed, followed by non-
portable solutions that could enhance performance furtherat
the expense of compromising a key HDFS design goal.

A. Application Disk Scheduling

A portable way to improve disk scheduling and filesystem
allocation is to modify the way HDFS batches and presents
storage requests to the operating system. In the existing
Hadoop implementation, clients open a new socket to the
DataNode to access data at the HDFS block level. The
DataNode spawns one thread per client to manage both the
disk access and network communication. All active threads
access the disk concurrently. In a new Hadoop implementation
using application-level disk scheduling, the HDFS DataNode
was altered to use two groups of threads: a set to handle
per-client communication, and a set to handle per-disk file
access. Client threads communicate with clients and queue
outstanding disk requests. Disk threads — each responsible
for a single disk — choose a storage request for a particular
disk from the queue. Each disk management thread has the
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Fig. 8. Impact of Application Disk Scheduling on Data Fragmentation

ability to interleave requests from different clients at whatever
granularity is necessary to achieve full disk bandwidth —
for example, 32MB or above as shown in Figure 2. In the
new configuration, requests are explicitly interleaved at the
granularity of a 64MB HDFS block. From the perspective of
the OS, the disk is accessed by a single client, circumventing
any OS-level scheduling problems. The previous tests were
repeated to examine performance under multiple writers and
readers. The results are shown in Figure 7(a) and Figure 7(b).

Compared to the previous concurrent writer results in Fig-
ure 5(a), the improved results shown in Figure 7(a) are striking.
What was previously a 38% performance drop when moving
between 1 and 2 writers is now a 8% decrease. Random seeks
have been almost completely eliminated, and the disk is now
consistently accessed in sequential runs of greater than 6MB.
Concurrent readers also show a similar improvement when
compared against the previous results in Figure 5(b). In ad-
dition to improving performance under concurrent workloads,
application-level disk scheduling also significantly decreased
the amount of data fragmentation created. Recall that, as
shown in Figure 6, files created with 2 concurrent writers
were split into fragments of under 300kB. However, when re-
testing the same experiment with the modified DataNode, the
fragmentation size exceeded 4MB, thus enabling much higher
disk bandwidth as shown in Figure 8.

Although this portable improvement to the HDFS architec-

ture improved performance significantly, it did not completely
close the performance gap. Although the ideal sequential run
length is in excess of 32MB, this change only achieved run
length of approximately 6-8MB, despite presenting requests
in much larger 64MB groups to the operating system for
service. To close this gap completely, non-portable techniques
are needed to allocate large files with greater contiguity and
less metadata.

B. Non-Portable Solutions

Some performance bottlenecks in HDFS, including file
fragmentation and cache overhead, are difficult to eliminate
via portable means. A number of non-portable optimizations
can be used if additional performance is desired, such as deliv-
ering usage hints to the operating system, selecting a specific
filesystem for best performance, bypassing the filesystem page
cache, or removing the filesystem altogether.

OS Hints — Operating-system specific system calls can
be used to reduce disk fragmentation and cache overhead by
allowing the application to provide “hints” to the underlying
system. Some filesystems allow files to be pre-allocated on
disk without writing all the data immediately. By allocating
storage in a single operation instead of many small operations,
file contiguity can be greatly improved. As an example, the
DataNode could use the Linux-onlyfallocate()system call in
conjunction with the ext4 or XFS filesystems to pre-allocate
space for an entire HDFS block when it is initially created, and
later fill the empty region with application data. In addition,
some operating systems allow applications to indicate that
certain pages will not be reused from the disk cache. Thus,
the DataNode could also use theposix fadvisesystem call to
provide hints to the operating system that data accessed will
not be re-used, and hence caching should be a low priority.
The third-partyjposixJava library could be used to enable this
functionality in Hadoop, but only for specific platforms such
as Linux 2.6 / AMD64.

Filesystem Selection— Hadoop deployments could man-
date that HDFS be used only with local filesystems that pro-
vide the desired allocation properties. For example, filesystems
such as XFS, ext4, and others supportextentsof varying sizes
to reduce file fragmentation and improve handling of large
files. Although HDFS is written in a portable manner, if the
underlying filesystem behaves in such a fashion, performance
could be significantly enhanced. Similarly, using a poor local
filesystem will degrade HDFS.

Cache Bypass— In Linux and FreeBSD, the filesystem
page cache can be bypassed by opening a file with the
O DIRECTflag. File data will be directly transferred via direct
memory access (DMA) between the disk and the user-space
buffer specified. This will bypass the cache for file data (but
not filesystem metadata), thus eliminating the processor over-
head spent allocating, locking, and deallocating pages. While
this can improve performance in HDFS, the implementation
is non-portable. Using DMA transfers to user-space requires
that the application buffer is aligned to the device block size
(typically 512 bytes), and such support is not provided by



the Java Virtual Machine. The Java Native Interface (JNI)
could be used to implement this functionality as a small
native routine (written in C or C++) that opens files using
O DIRECT. The native code must manage memory allocation
(for alignment purposes) and deallocation later, as Java’snative
garbage collection features do not extend to code invoked by
the JNI.

Local Filesystem Elimination — To maximize system per-
formance, the HDFS DataNode could bypass the OS filesystem
entirely and directly manage file allocation on a raw disk
or partition, in essence replacing the kernel-provided filesys-
tem with a custom application-level filesystem. A custom
filesystem could reduce disk fragmentation and management
overhead by allocating space at a larger granularity (e.g. at
the size of an HDFS block), allowing the disk to operate in a
more efficient manner as shown in Figure 2.

To quantify the best-case improvement possible with this
technique, assume an idealized on-disk filesystem where only
1 disk seek is needed to retrieve each HDFS block. Because
of the large HDFS block sizes, the amount of metadata needed
is low and could be cached in DRAM. In such a system, the
average run length before seeking should be 64MB, compared
with the 6MB runs obtained with application-level scheduling
on a conventional filesystem (See Figure 7). On the test
platform using a synthetic disk utility, increasing the runlength
from 6MB to 64MB improves read bandwidth by 16MB/s and
write bandwidth by 18MB/s, a 19% and 23% improvement,
respectively. Using a less optimistic estimate of filesystem
efficiency, even increasing the run length from 6MB to 16MB
will improve read bandwidth by 14 MB/s and write bandwidth
by 15 MB/s, a 13% and 19% improvement, respectively.

V. RELATED WORK

HDFS servers (i.e., DataNodes) and traditional streaming
media servers are both used to support client applications that
have access patterns characterized by long sequential reads
and writes. As such, both systems are architected to favor
high storage bandwidth over low access latency [20]. Beyond
this, however, there are key requirements that differentiate
streaming media servers from HDFS servers. First, streaming
media servers need to rate pace to ensure that the maximum
number of concurrent clients receives the desired service
level. In contrast, MapReduce clients running batch-processing
non-interactive applications are latency insensitive, allowing
the storage system to maximize overall bandwidth, and thus
cluster cost-efficiency. Second, media servers often support
differentiated service levels to different request streams, while
in HDFS all clients have equal priority. Taken collectively,
these requirements have motivated the design of a large num-
ber of disk scheduling algorithms for media servers [5], [7],
[14], [19], [20], [21]. Each algorithm makes different tradeoffs
in the goals of providing scheduler fairness, meeting hard or
soft service deadlines, reducing memory buffer requirements,
and minimizing drive seeks.

In addition to similarities with streaming media servers,
HDFS servers also share similarities with databases in that

both are used for data-intensive computing applications [18].
But, databases typically make different design choices that
favor performance instead of portability. First, while Hadoop
is written in Java for portability, databases are typicallywritten
in low-level application languages to maximize performance.
Second, while Hadoop only uses Java native file I/O features,
commercial databases exploit OS-specific calls to optimize
filesystem performance for a particular platform by configur-
ing or bypassing the kernel page cache, utilizing direct I/O, and
manipulating file locking at the inode level [10], [15]. Third,
while HDFS relies on the native filesystem for portability,
many well-known databases can be configured to directly man-
age storage as raw disks at the application level, bypassingthe
filesystem entirely [1], [12], [16]. Using storage in this manner
allows the filesystem page cache to be bypassed in favor of an
application cache, which eliminates double-buffering of data.
Further, circumventing the filesystem provides the application
fine-grained control over disk scheduling and allocation to
reduce fragmentation and seeks. Thus, databases show the
performance that can be gained if portability is sacrificed or if
additional implementation effort is exerted to support multiple
platforms in different manners.

One particular aspect of database design — application-
level I/O scheduling — exploits application access patterns
to maximize storage bandwidth in a way that is not similarly
exploitable by HDFS. Application-level I/O scheduling is
frequently used to improve database performance by reducing
seeks in systems with large numbers of concurrent queries.
Because database workloads often have data re-use (for ex-
ample, on common indexes), storage usage can be reduced
by sharing data between active queries [6], [24]. Here, part
or all of the disk is continuously scanned in a sequential
manner. Clients join the scan stream in-flight, leave after they
have received all necessary data (not necessarily in-order), and
never interrupt the stream by triggering immediate seeks. In
this way, the highest overall throughput can be maintained for
all queries. This particular type of scheduling is only beneficial
when multiple clients each access some portion of shared data,
which is not common in many HDFS workloads.

Some optimizations proposed here for Hadoop may be
present in the Google-developed MapReduce implementation
that is not publicly available. The optimizations described for
the Google implementation include reducing disk seeks for
writes by batching and sorting intermediate data, and reducing
disk seeks for reads by smart scheduling of requests [9].

VI. CONCLUSIONS

The performance of MapReduce, and Hadoop in particular,
has been called into question recently. For example, in some
experiments, applications using Hadoop performed poorly
compared to similar programs using parallel databases [18],
[22]. While such differences are typically blamed on the
MapReduce paradigm, this paper shows that the underly-
ing filesystem can have a significant impact on the overall
performance of a MapReduce framework. Optimizing HDFS
as described in this paper will boost the overall efficiency



of MapReduce applications in Hadoop. While this may or
may not change the ultimate conclusions of the MapReduce
versus parallel database debate, it will certainly allow a fairer
comparison of the actual programming models.

Furthermore, the performance impacts of HDFS are often
hidden from the Hadoop user. While Hadoop provides built-in
functionality to profile Map and Reduce task execution, there
are no built-in tools to profile the framework itself, allowing
performance bottlenecks to remain hidden. This paper is the
first to characterize the interactions between Hadoop and
storage. Here, we explained how many performance bottle-
necks are not directly attributable to application code (orthe
MapReduce programming style), but rather are caused by
the task scheduler and distributed filesystem underlying all
Hadoop applications.

The poor performance of HDFS can be attributed to chal-
lenges in maintaining portability, including disk scheduling un-
der concurrent workloads, filesystem allocation, and filesystem
page cache overhead. HDFS performance under concurrent
workloads can be significantly improved through the use of
application-level I/O scheduling while preserving portability.
Further improvements by reducing fragmentation and cache
overhead are also possible, at the expense of reducing porta-
bility. However, maintaining Hadoop portability wheneverpos-
sible will simplify development and benefit users by reducing
installation complexity, thus encouraging the spread of this
parallel computing paradigm.
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