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Abstract

Data-intensive computing systems running MapReduce-
style applications are currently architected with storage lo-
cal to computation in the same physical box. This poster
argues that upcoming advances in converged datacenter net-
works will allow MapReduce applications to utilize and ben-
efit from network-attached storage. This is made possible
by properties of all MapReduce-style applications, such as
streaming storage access patterns. By decoupling compu-
tation and storage, stateless compute nodes containing in-
expensive, low-power processors can be deployed in large
numbers to increase application performance, improve re-
liability, and decrease power consumption.

1 Introduction

Data-intensive problems exist today in the domains of
commerce, science, and engineering. These problems
are solved only by writing applications that leverage the
power of thousands of processors to manipulate data sets
ranging in size from hundreds of terabytes to dozens of
petabytes. Such applications can only be run in the data-
center, where they can take advantage of computation,
storage, power, and cooling resources on a large scale [2].

A new programming model – calledMapReduce – has
emerged to support these data-intensive applications. Pro-
grams are divided into amap function and areduce func-
tion. The map function takes a key/value pair and pro-
duces one or more intermediate key/value pairs. The re-
duce function takes these intermediate pairs and merges
all values corresponding to a single key. Both of these
stages can run independently on each key/value pair, ex-
posing enormous amounts of parallelism. In a MapRe-
duce application, a middleware layer (such as Yahoo’s
Hadoop) is responsible for distributing the parallelized
computation to a large pool of loosely-synchronized pro-
cessors and aggregating the results.

MapReduce-style applications use a different storage
architecture than traditional datacenter applications such
as transactional processing, which commonly use a cen-

tralized data store accessed across the network. A key
premise for MapReduce-style computing systems is that
there is insufficient network bandwidth to move the data
to the computation, and thus computation must move to
the data instead [2]. Based on the assumption that remote
data can only be accessed with low bandwidth and high
latency, current MapReduce architectures co-locate com-
putation and storage in the same physical box, as shown
in Figure 1. Storage is accessible across the network via
a global file system that provides replication and load bal-
ancing. However, the MapReduce framework attempts to
migrate computation to use data on locally-attached disks
whenever possible.

Upcoming advances in converged network fabrics will
enable a more flexible storage architecture for MapRe-
duce applications without any loss of efficiency. Con-
verged network technologies have previously focused on
allowing applications to access existing storage-area net-
works without either transiting a front-end storage server
or using a dedicated storage network adaptor. In contrast,
we advocate using such converged networks to decou-
ple computation and storage for MapReduce. The net-
work properties provided by quality-of-service and loss-
less flow control protocols will allow disks to be removed
from the compute nodes and instead attached to switches
throughout the datacenter. No dedicated storage-area net-
work will be required. Properties of MapReduce applica-
tions will allow this decoupling of computation from stor-
age while maintaining equivalent performance, enabling a
more flexible and efficient datacenter design.

2 Datacenter Architecture

We advocate a new storage architecture for MapReduce in
the datacenter that incorporates remote storage, as shown
in Figure 2 for a single rack. This design employs net-
worked disks – simple unstructured block storage devices
connected to the network [3] – along with the use of a
converged network to decouple storage resources from
computation resources. Compute nodes are equipped with
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processors but not disks, and storage nodes are equipped
with disks but are not used for computation. Instead of
co-locating storage and computation in the same box as in
the traditional MapReduce storage architecture, this de-
sign co-locates storage and computation on the same Eth-
ernet switch.

The advantages of using remote disks in a datacenter
are numerous. First, both computation and storage re-
sources can be adjusted to meet application requirements
during both cluster construction and operation. Second,
computation and storage failures are decoupled from each
other. This eliminates wasted resources that would have
been used to reconstruct lost storage when a computation
node fails. Third, fine-grained power management tech-
niques can be used, whereby compute and storage nodes
are enabled and disabled to meet current application re-
quirements. Finally, because computation is now an in-
dependent resource, a mix of both high and low power
processors can be deployed. The runtime environment
managing application execution can change the proces-
sors being used for a specific application in order to meet
administrative power and performance goals.

3 MapReduce and Remote Storage

MapReduce frameworks such as Hadoop make an explicit
assumption that storage is local to computation. However,
a fresh look at the architecture reveals that these resources
can be decoupled and connected merely to the same net-
work switch. This is made possible for two major reasons:

First, MapReduce applications use storage in a manner
that is different than ordinary applications. Data is typi-
cally stored in large blocks (e.g. 64MB) and accessed us-
ing a simple write-once, read-many coherence model [1].
Application performance depends more on the bandwidth
to access entire blocks than the latency to access any par-
ticular element in a block. Furthermore, data is accessed
in a streaming pattern, rather than random access. This
allows storage requests to be pipelined and data to be
streamed across the network, minimizing any effect from
network latency.

Second, modern network switches offer extremely high
performance. A typical 48- or 96-port Ethernet switch
provides the full bisection bandwidth across its switching
fabric, allowing an entire rack of hosts to communicate
with each other at full network speed. If more bandwidth
is needed, link aggregation can be used to connect multi-
ple Gigabit links to the same host. Modern switches also
have low latency – under 2us for a minimum-sized Eth-
ernet frame – and emerging cut-through fabrics promise
to reduce latency further. Compared to hard disk seek la-

tencies measured in milliseconds, the forwarding latency
of modern switches is negligible1. Thus, high perfor-
mance switches add minimal overhead to remote storage
accesses that are located in the same rack as the compu-
tation node. By combining modern network switches and
a streaming access pattern, remote disks can potentially
achieve throughputs approaching that of local disks.

We have tested this proposed architecture on a small
scale using a cluster computer running the Hadoop
MapReduce framework. This cluster was configured in
two ways: First, using disks installed in the compute
nodes, and second, moving those same disks to other non-
compute nodes attached to the same Ethernet switch. In
the second case, the lightweight ATA-over-Ethernet pro-
tocol was used to export each disk across the network as
a low-level block storage device with minimal overhead.
Preliminary experiments conducted using data-intensive
benchmarks such as a random data generator showed that
the decoupled storage architecture had equivalent perfor-
mance to the local storage architecture.

4 Conclusions

We propose a new architecture for MapReduce applica-
tions that decouples computation from storage by using a
converged network and networked disks. Removing the
disks provides an opportunity for more flexible and effi-
cient datacenter design. The ratio between computation
and storage resources can be changed both during data-
center construction and dynamically during operation to
meet application performance and power requirements.
Clusters can also be equipped with a mix of computa-
tion nodes containing either high-performance (i.e., Intel
Xeon) or high-efficiency (i.e., Intel Atom) processors, al-
lowing applications to select the performance and power
mix that is desired.
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1Even solid-state disk latencies are much higher than network
switching latencies. Regardless, conventional disks are still the likely
choice for MapReduce datacenter storage due to capacity andcost.
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5 Appendix

Figure 1: Local-Storage Architecture (Single Rack)

Figure 1 shows the storage architecture for a traditional datacenter running a MapReduce framework such as
Hadoop. In this architecture, data is stored on disks local to the processors. Although the data is accessible over
the network, computation is migrated to the data whenever possible.

Figure 2: Remote-Storage Architecture (Single Rack)

Figure 2 shows the proposed remote storage architecture. Inthis datacenter, storage is provided by network-attached
disks connected to the same network switch as the compute nodes.
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