
Rice University – Department of Electrical and Computer Engineering – Technical Report TREE0611 1

A Reconfigurable and Programmable
Gigabit Ethernet Network Interface Card

Jeffrey Shafer and Scott Rixner

Rice University
Houston, TX

E-mail:{shafer,rixner}@rice.edu

Abstract

RiceNIC is a reconfigurable and programmable Gigabit
Ethernet network interface card (NIC). It is an open plat-
form meant for research and education into network in-
terface design. The NIC is implemented on a commercial
FPGA prototyping board that includes two Xilinx FPGAs, a
Gigabit Ethernet interface, a PCI interface, and both SRAM
and DRAM memories. The Xilinx Virtex-II Pro FPGA on
the board also includes two embedded PowerPC proces-
sors. RiceNIC provides significant computation and stor-
age resources that are largely unutilized when performing
the basic tasks of a network interface. The remaining pro-
cessing and storage resources are available to customize the
behavior of RiceNIC. This capability and flexibility makes
RiceNIC a valuable platform for research and education
into current and future network interface architectures.

1 Introduction

Networking has become an integral part of modern com-
puter systems. While the network interface has tradition-
ally been a simple device that forwards raw data between
the network and the operating system, its role is chang-
ing. More sophisticated network interfaces are being de-
veloped every day that perform functions such as TCP of-
floading [3], iSCSI [2], encryption and firewalling [1], re-
mote direct memory access [6], and so on. Different net-
work interfaces perform these functions in different man-
ners and there are typically no common interfaces to utilize
them. The wide variety of services that are migrating to
the network interface clearly motivates the need for directed
research into the most effective services and abstractions
that can be implemented by the network interface. Unfortu-
nately, no suitable platform exists to successfully carry out
such research.

This paper presents the design of RiceNIC, a reconfig-

urable and programmable Gigabit Ethernet network inter-
face card (NIC) that provides a substrate for performing re-
search and education activities in network interface design.
RiceNIC is built on top of a commercially available Avnet
Virtex-II Pro Development Kit. The Avnet board includes
Xilinx Virtex-II Pro and Spartan-IIE FPGAs, flash memory,
SRAM, SDRAM, a SODIMM DDR SDRAM slot, and a
copper Gigabit Ethernet physical interface and connector.
The Virtex-II Pro FPGA includes two embedded PowerPC
405 processors that can be operated at 300 MHz. Cus-
tom NIC firmware is provided along with RiceNIC device
drivers for both Linux and FreeBSD.

Using a single PowerPC processor, the RiceNIC
is able to saturate the Gigabit Ethernet network link
with maximum-sized packets. This leaves significant
resources—including 50% of the reconfigurable logic ele-
ments on the Virtex-II Pro FPGA, a spare PowerPC proces-
sor, and hundreds of megabytes of memory—available on
the RiceNIC to use for advanced networking research. For
example, the RiceNIC FPGA hardware and firmware was
modified in a research program to allow multiple virtual ma-
chines running on the same system to concurrently control
a single NIC, increasing network throughput by 2-4 times.
In addition, simpler educational activities are also possible
without hardware reconfiguration, as the NIC’s firmware
and drivers are easily modifiable. For example, without
any additional hardware support, a network address transla-
tion firewall can be implemented on RiceNIC that achieves
bandwidths within 3% of line rate while only using one
PowerPC processor. Therefore, the RiceNIC is a capable
platform for performing both research and educational ac-
tivities investigating the performance and behavior of cur-
rent and future network interfaces.

The RiceNIC design is available for public use.
The Avnet development kit with the FPGA board can
be purchased commercially, while the custom RiceNIC
software—including device drivers, NIC firmware, and
FPGA bitstream programming files—is available for free
download. The FPGA hardware design can be modified
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Figure 1. Data Flow to (a) Transmit Packets and (b) Receive Pa ckets

if the developer independently obtains licenses for the em-
bedded Xilinx PCI and MAC cores, which cannot be redis-
tributed except in a compiled bitstream format.

In the remainder of this paper, Section 2 presents exist-
ing programmable and reconfigurable network devices used
for research. Next, Section 3 introduces the Avnet FPGA
development board used to construct the RiceNIC. Sec-
tion 4 details the custom FPGA programming of the Avnet
board. Then, Sections 5 and 6 present an evaluation of the
RiceNIC. Finally, Section 7 concludes the paper.

2 Background

Many new system architectures have been proposed that
integrate advanced network services onto the network in-
terface card (NIC). However, commodity network inter-
faces are only designed to perform basic networking func-
tions. Therefore, they provide just enough computational
and memory resources to achieve the desired performance
at minimal cost. This choice, however, limits the extent to
which advanced network services can be implemented and
evaluated on commodity NICs. Furthermore, even if the
network interface does provide additional resources, they
often do not provide the technical documentation, licenses,
and tools that would be necessary to use them for research
purposes. This section describes how commodity network
interfaces work, discusses previous efforts to use them in
research, and past attempts to develop more flexible alter-
natives. This motivates the need for RiceNIC, a network in-
terface with considerable design flexibility, significant com-
putational and memory resources, and open hardware and
software specifications.

2.1 Network Interface Operation

The primary task of a network interface card is to enable
the host system to transfer data between main memory and

the network. Modern network interfaces all accomplish this
task in a similar fashion, which will be described in this sec-
tion. The RiceNIC is able to behave comparably, although it
also provides additional flexibility and performance to aug-
ment or even completely change its behavior.

NICs connect to the host system via a local interconnect
such as the Peripheral Component Interconnect (PCI) bus.
A device driver running on the host system is responsible
for communicating with the NIC over this interconnect. On
the NIC itself, a small amount of memory, on the order of a
few hundred kilobytes, is used as a transmit (TX) or receive
(RX) circular buffer. These separate buffers are connected
to a medium access controller (MAC) which implements
the link level protocol. The MAC is attached to a physical
interface (PHY) which performs the actual signal process-
ing necessary to send the signal on the copper, wireless, or
optical network.

The process employed by a generic NIC to transmit a
packet over the network is shown in Figure 1, part (a). First,
the host system creates a transmit descriptor containing the
location and length in main memory of the packet to send.
In step 1, the host system transfers this control descriptorto
the NIC via programmed I/O. The NIC memory used in this
transfer, referred to asmailboxesin the RiceNIC design, is
a small region directly accessible by both the host system
and the NIC. In step 2, the NIC examines the descriptor and
initiates a DMA transfer to copy the data packet from main
memory of the host system into the NIC transmit buffer. In
step 3, the MAC starts reading the packet out of the buffer,
and transmits it over the network in step 4. Finally, in step 5,
the NIC notifies the host system, typically via an interrupt,
that the packet has been transferred.

The process to receive a packet from the network is
shown in Figure 1, part (b). The incoming packet is re-
ceived from the network in step 1 and stored in the NIC
receive buffer in step 2. The host system has previously al-
located multiple receive buffers in main memory and trans-
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Figure 2. Avnet Virtex-II Pro Board

ferred their locations to the NIC. Thus, in step 3, the NIC
transfers the received packet via DMA from the local buffer
to the host main memory. Once the packet has been com-
pletely transferred, the NIC notifies the host system via an
interrupt in step 4.

As these tasks are fixed, most commodity NICs are im-
plemented with just enough computational and memory re-
sources to achieve the desired performance at a minimal
cost. This choice, however, makes them difficult to use
for research purposes, since many active areas of research
in network architecture involve performing additional net-
work services on the NIC. Thus, researchers typically use
more specialized network interfaces to gain performance or
design flexibility.

2.2 Network Interfaces in Research

The complexity of the network subsystem makes it dif-
ficult to evaluate proposed modifications without an ac-
tual hardware implementation. The capability and flex-
ibility of RiceNIC could provide significant benefits to
projects of this type that would otherwise have to use older
Ethernet-based programmable NICs or newer non-Ethernet
programmable NICs.

The Tigon2 [4] is a programmable full-duplex gigabit
Ethernet NIC that has been frequently used for network re-
search. The NIC contains two in-order 88MHz single issue
processors based on the MIPS instruction set. The proces-
sors share a 64-bit bus to 1 MB of 100 MHz SRAM. In ad-
dition, each processor has its own small scratch pad mem-
ory under program control. The NIC also has direct mem-
ory access (DMA) and medium access controller (MAC)
hardware assist modules. The DMA module performs reads

and writes over the 64-bit, 66 MHz PCI bus and the MAC
module transmits and receives data over the network. De-
vice drivers, firmware, and tools were publicly distributed
for the Tigon, which was extensively used in research into
message passing [14], firmware parallelization for 2-CPU
NICs [9, 15], NIC data caching [10], and user-level network
access [13].

In all cases, the authors did an excellent job of extracting
as much performance from the hardware as possible. Some
limitations in the Tigon2 NIC, however, were difficult to
bypass. First, parallelization efficiency could be improved
since the Tigon2 only implements a single semaphore for
CPU synchronization. Second, the shared hardware units,
such as the MAC and DMA, have no concept of concur-
rency and require external synchronization between the pro-
cessors. The FPGA-based RiceNIC could be modified to
add better synchronization between processors and allow
parallel control of shared hardware units. Third, the mem-
ory resources of the Tigon2 NIC are extremely limited.

In addition to Ethernet NICs such as the Tigon, other
academic research projects have used more capable special-
ized Myrinet/Infiniband NICs. For example, projects in-
volving payload caching on routers and firewalls [20] and
NIC-based intrusion detection [12] have used these special-
ized NICs. These projects are actually designed for, and
best suited for, commodity Ethernet networks, not high per-
formance supercomputing interconnects. Using the gigabit
Ethernet RiceNIC produces a more convincing demonstra-
tion because, as an experimental platform, it is much closer
to a final commercial product.
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2.3 Reconfigurable Network Devices

In addition to pure software-programmable NICs, many
FPGA-based NICs have also been developed [7, 8]. These
devices are less capable than the RiceNIC, however, as the
CiNIC only has a 10 Mb/s Ethernet link and 16 MB of
SRAM, while the gigabit S-LINK NIC does not have any
embedded processors on the Altera FPGA used. FPGA-
based switches and routers have also been created [11], in-
cluding the active “NetFPGA” design from Stanford [5, 17].
These boards and programming kits are freely available for
academic and research use.

The second generation system, NetFPGA-v2, provides a
four-port Gigabit Ethernet PHY, a Virtex-II Pro FPGA with
two PowerPC processors, 4 MB of onboard memory, and
a 32-bit/33MHz PCI bus interface [17]. This FPGA also
provides high-speed serial links to connect several NetF-
PGA boards together. Although initially used as a class-
room teaching tool, NetFPGA has recently been used for
research into new network protocols and intrusion detec-
tion [17].

The NetFPGA and RiceNIC projects can be used in a
complimentary fashion. NetFPGA is well suited for use as
a router or switch due to its 4 network ports and slower PCI
bus that limits communication to the host system. RiceNIC
is better used as a NIC because it only has 1 network
port and a faster (64-bit/66-MHz) PCI bus. Both systems
could be used to build an entirely reconfigurable and pro-
grammable networking lab where all of the endpoints and
routing fabric can be modified at will.

3 Hardware Platform

The RiceNIC was built on a commercial FPGA proto-
typing board, the Avnet Virtex-II Pro Development Board,
which is shown in Figure 2. This board includes all of
the components necessary for a Gigabit Ethernet network
interface, as well as plentiful computation and storage re-
sources. Therefore, the board is an excellent substrate on
which to construct a high performance reconfigurable and
programmable NIC. Furthermore, the commercial availabil-
ity of this board obviates the need to custom-design a simi-
lar board.

The architecture and interconnection of the FPGAs,
memories, and other devices on the Avnet board is shown
in Figure 3. This board includes a Xilinx Virtex-II Pro 30
FPGA, which contains both reconfigurable logic and two
embedded IBM PowerPC 405 processors that can run at
300 MHz. These in-order processors have 32 general pur-
pose registers, separate 16 KB 2-way set associative in-
struction and data caches, and hardware multiply and divide
units [19]. The Virtex FPGA is connected to a 10/100/1000
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Figure 3. Avnet Board Architecture

copper Ethernet PHY on the board, as well as an RS-232
serial port and high speed serial (Rocket I/O) links.

The board also includes a Spartan-IIE 300 FPGA that is
primarily used as the PCI controller. The card supports a
64-bit, 66MHz PCI interface which also powers the entire
board. The Spartan FPGA is connected to that PCI interface
and its own RS-232 serial port.

The Avnet board includes multiple on-board memories:
2 MB of SRAM, 16 MB of flash, 32 MB of SDRAM, and
a SODIMM socket. A 256 MB DDR SDRAM module was
added to replace the 128 MB module that is bundled with
the development kit. In addition, a PROM and compact
flash reader are provided for the purpose of programming
the two FPGAs at power-on.

The architecture and interconnection of the FPGAs,
memories, and other devices on the Avnet board is shown
in Figure 3. While the development board does provide all
of the necessary components for a Gigabit Ethernet network
interface, it does impose a few architectural constraints on
the RiceNIC. First, the PCI bus is connected only to the
Spartan FPGA, which therefore must serve as the PCI con-
troller. However, this allows the RiceNIC to operate in both
3.3V and 5V PCI slots, as the Spartan II supports both 3.3V
and 5V I/O signaling, whereas the Virtex II Pro only sup-
ports 3.3V I/O signaling. Second, the Ethernet PHY and
DDR SDRAM is only connected to the Virtex II Pro FPGA.
This is not a serious constraint, as the Virtex FPGA is more
capable and is a more reasonable location for the main func-
tionality of the network interface. Finally, the data bus
between the Spartan and Virtex FPGAs has limited band-
width and is shared with the SDRAM. This means that the
SDRAM cannot be used in a Gigabit network interface de-
sign as the full bandwidth of the bridge will be needed to
transfer data between the PCI bus and the Virtex FPGA. Ad-
ditional bandwidth between the FPGAs would be desirable
to allow use of this memory. While the network interface
must be designed around these constraints, there is still con-
siderable flexibility to modify the FPGA configurations to
tailor the network interface’s functionality and performance
for specific application requirements.
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4 NIC FPGA Design

Figure 4 shows the overall organization of the RiceNIC.
This architecture satisfies the constraints of the Avnet board
while efficiently integrating the components of a Gigabit
Ethernet network interface. The MAC unit, DMA unit,
inter-FPGA bridge, hardware event management unit, and
PCI interface were custom designed for RiceNIC. The re-
maining components were provided by Xilinx and used
with little or no modification. Both the MAC unit and the
PCI interface are built around low-level interfaces provided
by Xilinx; however, those units are still mostly custom logic
to integrate them into the rest of the system and to provide
flexible software control over the hardware functionality.

The Xilinx Virtex-II Pro FPGA on the Avnet develop-
ment board contains most of the NIC logic, including the
PowerPC processors, on-chip memories, MAC controller,
DMA unit front-end, and DDR memory controller. The
smaller Spartan-IIE FPGA contains the PCI controller, the
back-end DMA controller, and a SRAM memory controller.
The SDRAM, although connected to a shared data bus be-
tween the Spartan and Virtex FPGAs, was not used because
the entire bus bandwidth was needed to efficiently use the
PCI interface.

To save development time, pre-built Xilinx cores were
used for several of the hardware modules, including the PCI
interface, DDR controller, and a low-level MAC. However,
these cores can not be connected directly to form a work-
ing NIC. For example, although Xilinx provides a PCI core,
it must be wrapped within a custom DMA unit to allow
the PowerPC to initiate and manage high-performance burst
transfers to/from the host system across the FPGA bridge.
Similarly, although Xilinx provides a low-level MAC core,
it must be outfitted with an advanced descriptor-based con-
trol system, data buffers, and a DMA unit to transfer packet
data between NIC memory and the PHY. Finally, the DDR
controller required modifications to function in this specific
development board with its unique wiring.

The processors, memories, and hardware units are in-
terconnected on the Virtex FPGA by a processor local bus
(PLB). The PLB is a high performance memory-mapped
100 MHz 64-bit wide split-transaction bus that can provide
a maximum theoretical bandwidth of 12.5 Gbits/sec in full-
duplex mode. The PLB allows for burst transmissions of
up to 128 bytes in a single operation, which is used by the
DMA and MAC units to improve memory access efficiency.

Also attached to the PLB is a small memory-mapped
control module used to route descriptors to or from the
MAC and DMA hardware assist units. This module also
provides a central location for hardware counters, event
thresholds, and other low-level control functions. By at-
taching this central control unit to the PLB, either PowerPC
processor can manipulate these important NIC functions.
The control unit takes 18 PowerPC cycles to read and 12
cycles to write a 32-bit word, primarily due to bus arbitra-
tion delays.

Unlike any other commercially available network inter-
face, RiceNIC provides a UART that is accessible over the
PLB. This UART interfaces with a serial port on the Avnet
board that can be connected to an RS-232 serial port on an
external computer, allowing terminal access directly to the
firmware on the network interface. This can be used both
for the firmware to display status and debugging informa-
tion to the terminal and to provide a command-line inter-
face for querying the network interface as it operates. Such
terminal access greatly facilitates debugging, development,
and evaluation of network interface firmware.

The rest of this section explains how the components de-
picted in Figure 4 operate to form a functioning NIC.

4.1 Hardware Events

The RiceNIC provides an event-based architecture to no-
tify the firmware running on the PowerPC when the hard-
ware assist units have completed particular tasks. Existing
assist units such as the MAC and DMA use this extensi-
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ble event infrastructure, which can also support additional
hardware units.

An event vector is stored in the scratchpad, which is con-
nected to one of the PowerPC processors, as shown in Fig-
ure 4. The event vector is automatically updated by the
hardware to indicate which hardware units have pending
events. The hardware delivers nine different events to the
firmware: four MAC events, four DMA events, and a mail-
box event. The PowerPC also provides several timers that
allow for periodic timer events.

Figure 5 shows one possible firmware event loop that uti-
lizes the hardware event vector. In the figure,hw events,
a 32-bit unsigned integer (uint32), points to the location
of the hardware event vector. The event vector is ordered
such that the location within the vector indicates the event’s
priority. Higher priority events are stored in higher bit po-
sitions. A global software event vector,sw events in the
figure, can also be used to create software events. The soft-
ware event bits should be chosen to not overlap with the
preset hardware event locations, so that the software and
hardware event registers can be merged with a simple bit-
wise or operation. Once they are combined, the processor
can optionally mask off specific event bits to ignore them.
Then, the PowerPC’scntlzw instruction (count leading
zeros) can be used to determine the highest priority bit po-
sition in the event vector that is set, indicating an event is
pending. The resulting event index can then be used as an
offset into an array of function pointers to invoke the cor-
rect handler. To simplify the figure, the handler functions
are assumed to be properly assigned to thehandlers ar-
ray. Note that if no bits are set,cntlzw returns 32, so the
32nd handler is thenull event handler. Processing the event
should clear it automatically by the associated hardware, so
the next time through the event loop, lower priority events
will be handled, unless a new higher priority event occurs.

Many other firmware organizations are possible, includ-
ing polling the hardware units or other event loop architec-
tures. However, using the hardware event vector can greatly
improve system performance, as it is more efficient to poll a
single location than to poll each hardware unit individually.

4.2 MAC Unit

The media access control (MAC) unit is responsible for
transferring data between NIC memories attached to the
PLB and the physical interconnect (PHY) module. RiceNIC
extends the MAC capabilities to provide the PowerPC
firmware more flexibility in controlling the MAC operation.
The MAC unit in the RiceNIC combines the low-level Xil-
inx MAC core, which communicates directly with the PHY,
with a custom wrapper that provides data buffers and con-
trol interfaces.

Figure 6 shows the MAC receive unit architecture. The

/* Array of event handler function pointers */
void (*handlers[32])(void);

/* Bit vectors of events */
volatile uint32 *hw_events = HW_EVENTS_ADDR;
extern uint32 sw_events;
uint32 event_vector;

/* Highest priority event */
uint32 event_index;

while (true) {
/* Merge hardware & software event vectors */
/* Must reload HW event vector every time */
event_vector = (*hw_events) | sw_events;

/* Find first event bit that is set */
event_index = cntlzw(event_vector);

/* Invoke the corresponding event handler */
handlers[event_index]();

}

Figure 5. Sample firmware event loop.
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transmit side contains an identical set of FIFOs and status
registers. The NIC firmware running on the PowerPC man-
ages the MAC through the use of 64-bit descriptors. These
descriptors are transferred to the MAC unit, stored in FI-
FOs, and consumed by the MAC when it is able to pro-
cess them. To receive data, the PowerPC must first allocate
buffer space in the NIC memory to hold a sequence of pack-
ets. Then, it creates multiple receive descriptors containing
the address of each buffer and transfers these to the MAC
RX (receive) input FIFO via the PLB control unit. Up to
127 descriptors can be sent by the firmware and stored in
the FIFO so that the MAC is always able to receive and
properly store packets. Once a descriptor is received by the
MAC, it operates independently of the firmware.

When a packet is later received from the PHY, the MAC
packet processing module accepts it from the network and
stores it in its temporary internal 16 KB data receive FIFO.
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The hardware prevents the receive buffer from overflowing.
Once the data receive FIFO contains more than 14 KB of
data, all subsequent packets will be completely dropped un-
til the FIFO has room for a new packet. Thus, standard
Ethernet packets will either be received in their entirety,or
not at all.

The receive FIFO only provides temporary storage for
received packets. A received packet is automatically trans-
ferred over the PLB to the buffer location indicated by the
next descriptor in the MAC RX input FIFO. If no descrip-
tor is available, the packet remains in the MAC’s internal
receive FIFO until the PowerPC produces more receive de-
scriptors. After the packet has been transferred to the speci-
fied location, a new descriptor is created by the hardware
containing status information on the received packet, in-
cluding the memory location at which it was stored. This
descriptor is placed in the MAC RX output FIFO. The
PowerPC should read this descriptor via the PLB control
unit in order to determine that a packet has been received.

By using explicit descriptors under processor manage-
ment, this architecture gives the firmware flexibility to man-
age the hardware functions of the MAC unit. Unlike con-
ventional NICs, such as the Tigon [4], that use a contigu-
ous circular receive buffer, the RiceNIC allows buffers to be
placed arbitrarily in memory under firmware control. This
allows the use of advanced algorithms, such as out of order
processing of received packets, that would be difficult if a
simple circular buffer was mandated by the hardware.

The firmware has two methods to monitor MAC progress
and determine if a new RX input descriptor should be pro-
duced or an output descriptor consumed. The processor can
poll two different count registers via the PLB control mod-
ule to determine the number of descriptors stored in the RX
input and output FIFOs. Or, the processor can use the hard-
ware event vector. The MAC receive unit provides two sep-
arate hardware events to notify the firmware when more de-
scriptors can be enqueued on the receive input side or when
descriptors must be dequeued on the receive output side.
Two additional count registers and events serve the same
function for the transmit FIFOs.

These hardware events are triggered based on the num-
ber of descriptors in the corresponding FIFO. Each FIFO
has an independent threshold that indicates when the event
should be triggered, allowing the firmware to aggregate pro-
cessing and increase efficiency. For example, if the MAC
RX input FIFO threshold is set to 5, then that event will
not be triggered until there are 5 available slots in the FIFO.
When thresholds greater than 1 are used for the output FI-
FOs, the firmware must also periodically poll the count reg-
isters to ensure they will be serviced when packets are re-
ceived or transmitted infrequently. The hardware events are
automatically cleared when the output FIFO occupancy or
input FIFOs vacancy drops below their thresholds.

The process of transmitting a packet is similar to the pro-
cess described for receiving a packet. To send data, the
PowerPC ensures that the entire packet is resident in mem-
ory, and then sends a descriptor to the MAC with the address
(or a sequence of addresses if the packet is fragmented).
The MAC unit autonomously transfers data from the appro-
priate memory on the PLB into its temporary 8 KB data
transmit FIFO and then sends the data over the network in
one continuous burst. These operations are pipelined for
subsequent packets to make full use of the transmit FIFO.

An optional hardware checksum unit can assist by calcu-
lating the TCP checksum on both transmitted and received
packets. For transmitted packets, the checksum is calcu-
lated when the packet is transferred from on-NIC memory
to the MAC, and placed directly in the outgoing datastream
at a user-specified location. This allows the NIC processor
to modify the packet (or create new packets entirely!) and
still gain the performance benefit of a hardware checksum
module. For received packets, the checksum is calculated
before the packet is stored in memory. It is delivered to the
processor via the receive descriptor, allowing the processor
to verify that the data was successfully received.

The MAC unit also implements a unique form of gather
transmit. It can gather discontiguous regions from NIC
memory for transmission as a single packet. This capability
is very useful for NIC research, such as network stack of-
floading, where the NIC processor generates packets itself
instead of merely forwarding data generated by the host sys-
tem. In this scenario, the NIC does not need to waste time
copying packet data to a contiguous buffer for transmission.

4.3 DMA Unit

All high performance NICs use direct memory access
(DMA) to transfer data to the host system by reading and
writing its memory directly. RiceNIC uses a custom-built
DMA assist unit to transfer data between the NIC memo-
ries and the host memory via the PCI bus. The DMA unit
can transfer data to/from any NIC memory unit with a con-
troller on the Virtex that is connected to the PLB, which is
all memories except for the scratchpad and SRAM.

As shown in Figure 4, the DMA unit is partitioned into
two components. The front-end DMA engine contains
the descriptor FIFOs and control registers, which are con-
structed in a similar fashion to the MAC unit. This unit is
responsible for moving data between NIC memory and the
bridge that connects the two FPGAs. The bridge transfers
data between the front-end and back-end DMA controllers.
The back-end DMA controller uses the Xilinx PCI core to
move data between the Spartan FPGA and host memory.
The DMA unit contains 2 KB read and write buffers that
allow it to sink and source data for PCI bus transfers, which
restricts the maximum sized DMA operation to 2 KB. The
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size of these buffers is physically limited by the available
memory on the Spartan FPGA.

As with the MAC unit, the DMA unit is controlled by
the firmware through the use of descriptors. The firmware
writes 128-bit DMA descriptors to the DMA unit’s in-
put descriptor FIFOs. Each descriptor contains a NIC ad-
dress, host address, length, and other flags. The DMA unit
processes each descriptor and performs the data transfer
asynchronously. Unlike the MAC unit, the DMA unit in-
crements several counters when each transfer completes—
there are no descriptor output FIFOs. The firmware uses
these counters to track the progress of the DMA engine.

The first counter tracks the number of reads and writes
completed since the NIC hardware was last initialized.
These counts are maintained independently, but are read by
the processor in a single 32-bit word PLB control unit trans-
fer. The DMA write count uses the upper 16 bits and the
DMA read count uses the lower 16 bits.

Two more counters track the number of reads and writes
completed since the corresponding counter was last read.
These counts are maintained independently and read by the
processor at separate PLB control unit locations. Once the
firmware has read either the read or write counter, it is reset
to zero. This allows the firmware to easily determine how
many DMA transfers have completed since it last checked.

In addition to the counters, the DMA unit also generates
hardware events in a similar fashion as the MAC unit. These
events indicate when the DMA unit is ready for another read
or write descriptor and when a read or write transfer has
been completed. Thresholds can also be used in a similar
fashion to the MAC unit to aggregate firmware processing.

4.4 Mailboxes

To facilitate communication from the host to the net-
work interface, RiceNIC provides specialmailbox loca-
tions. These mailboxes are locations within the SRAM,
shown in Figure 4, that can be written by the host using
programmed I/O (PIO). They are used by the host to trans-
fer control information to the network interface. Bulk data,
in contrast, would be transferred using DMA by the NIC.

The low 512 KB of the SRAM memory is divided into
128 contextsof 4 KB each. These contexts may be used
in any fashion by the device driver and the NIC firmware.
However, within each context, the lowest 24 memory loca-
tions are mailboxes which trigger a hardware event. When
any mailbox is written by PIO from the host system, the
mailbox event is automatically generated by the hardware,
notifying the firmware of a mailbox update. When the
firmware chooses to process the mailbox event, it can effi-
ciently determine which mailboxes have been written by de-
coding a hierarchy of bit vectors that are automatically gen-
erated by the hardware. These vectors are stored in the data

scratchpad to allow low latency access. The first 128-bit
vector in the hierarchy indicates which of the 128 potential
contexts have updated mailbox events to process. The sec-
ond array of 24-bit vectors in the hierarchy indicate which
mailbox(es) in each context have been updated.

Once the specified mailbox has been identified, the
firmware can read the appropriate SRAM location via the
PLB and inter-FPGA bridge. After processing the infor-
mation, the firmware can then clear that mailbox event by
writing a mask of mailboxes per context to a special PLB
control address. This allows multiple mailbox events to be
cleared with a single store operation. Note that the mail-
boxes do not interfere with the normal operation of the
2 MB SRAM. The SRAM outside of the 128 contexts is
always available as general-purpose storage accessible to
both the PowerPC processors and the host. Furthermore,
the firmware can choose to completely ignore the mailbox
events and use the entire SRAM as general-purpose storage.

4.5 NIC Memory

RiceNIC includes a substantial amount of memory both
immersed in the FPGA fabric and on external chips on the
NIC card. The total memory provided is far in excess of the
requirements of a basic NIC. Each memory on the RiceNIC
has varying performance, capacity, and accessibility from
the PowerPC, host system, and hardware assist units like
the MAC and DMA.

Each processor has independent 16 KB instruction and
data caches that can operate on any memory connected to
the PLB. The caches have a single-cycle access latency. The
firmware controls which memory regions are cached by ma-
nipulating a processor register mask.

A 2 KB word-addressable on-FPGA scratch-pad is di-
rectly connected to one PowerPC through an on-chip mem-
ory (OCM) interface, and is not accessible over the PLB.
This high speed data bus is a private interface for a small
amount of high-speed memory and is not connected to the
data cache. 528 bytes of scratchpad are consumed by the
hardware event vector and the mailbox bit-vectors. This re-
gion is read-only.

For general purpose storage, the Virtex contains two
memories connected to the PLB: a 32 KB block RAM
(BRAM) and a 256 MB DDR SODIMM. The BRAM is
constructed from the same FPGA resources as the scratch-
pad, but has higher latency because it is accessed via the
PLB. Note that the size of the scratchpad and BRAM can
be altered by reprogramming the FPGA. The memory con-
troller for the DDR SODIMM is on the Virtex FPGA. The
current memory controller is preconfigured for a specific
SODIMM module, but a modified DDR controller with dif-
ferent timing parameters could accept a larger SODIMM
memory module. Together these memories are orders of
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Memory Type
Controller Storage

Capacity
Memory Latency

Location Location Burst Read Write

Data Cache PowerPC PowerPC 16 KB N/A 1 1
OCM (Scratchpad) Virtex Virtex 2 KB N/A 6 6
SRAM Spartan Off-Chip 2 MB Not Supported 98 45

BRAM Virtex Virtex 32 KB
Disabled 27 21
Enabled 7 5

DDR Virtex Off-Chip 256 MB
Disabled 51 30
Enabled 10 12

Table 1. NIC Memory, Location, Capacity, and Access Latency (in PowerPC 300 MHz cycles)

magnitude larger than those found on a conventional net-
work interface, enabling storage-intensive NIC research.

Finally, there is 2 MB of SRAM that is accessible to both
PowerPC processors, via the PLB, and the host system, via
the PCI bus through PIO. Therefore, the SRAM can be used
to transfer data between the host and the NIC. As described
in Section 4.4, the SRAM contains special mailbox loca-
tions. Furthermore, the firmware can trigger an interrupt of
the host by writing to a specific SRAM address.

Table 1 shows the size, location, and latency of the vari-
ous memories in the system as measured from the PowerPC
processors. The DDR and BRAM memories can optionally
be cached by the PowerPC. The cache uses 32-byte burst
transfers between the cache and memory, greatly improv-
ing bus utilization and memory efficiency. Thus, the results
are presented both with and without burst access averaged
across 5 million accesses. In the disabled case, all accesses
were performed to a single address, while in the enabled
case accesses were swept across a region of memory in ex-
cess of the cache size. Because the custom bridge between
the two FPGAs does not currently implement bursting, burst
access mode is not available for the SRAM.

As the benchmarks show, the RiceNIC memories have
widely differing performance and capabilities. The SRAM
has very high latency due to its remote location across the
FPGA bridge, but is very useful as shared memory between
the host system and the NIC. The DDR module provides
the most storage capacity, but at a higher access latency
than the small on-chip BRAM and scratchpad. Given these
differences, data should be placed in the appropriate mem-
ories based upon its size and the frequency with which it
is accessed. Thus, the RiceNIC gives the programmer sub-
stantial flexibility to explore design tradeoffs regardingNIC
memory capacity and price.

4.6 Hardware Utilization

Table 2 shows the FPGA utilization for the RiceNIC de-
vices. The Virtex FPGA still has substantial resources avail-
able for future research and development even after imple-
menting a functional NIC. For instance, less than 40% of

FPGA Component Utilization

Virtex

Slice Flip Flops 9,089 / 27,392 33%
4-input LUTs (logic) 11,811 / 27,392 43%
4-input LUTs (total) 13,126 / 27,392 47%

Occupied Slices 9,164 / 13,696 66%
BRAM 51 / 136 37%

Spartan

Slice Flip Flops 2361 / 6144 38%
4-input LUTs (logic) 2504 / 6144 40%
4-input LUTs (total) 4735 / 6144 77%

Occupied Slices 3070 / 3072 99%
BRAM 6 / 16 37%

Table 2. FPGA Device Utilization

the embedded BRAM has been consumed by the current de-
sign. In addition to the FPGA memory resources, over 50%
of the reconfigurable logic elements are available for addi-
tional hardware assist modules to be added to the NIC. Ad-
ditional modules can be easily connected to the main PLB
for data transport and to the PLB control unit and hardware
event register for efficient control.

The Spartan FPGA, in contrast, is essentially filled to ca-
pacity in the current design. Due to the design of the Avnet
development board, shown in Figure 3, only the Spartan
FPGA can contain the PCI core and SRAM memory con-
troller. Fortunately, it is likely that most hardware modi-
fications would be most effective on the larger and faster
Virtex chip. If additional logic resources were required on
the Spartan, the DMA data buffers stored there could be re-
duced from their current 2 KB size at a cost of reducing the
burst length and efficiency of PCI transfers. Or, the SRAM
controller and mailbox logic could be removed instead.

5 Performance Evaluation

To measure the RiceNIC performance, the card was
tested in a modern Opteron server with dual Broadcom
5704C NICs. The RiceNIC installed in one system was di-
rectly connected to the onboard Broadcom NIC of a second
similarly-configured system. On both machines, a Linux
2.6 kernel was used with the TCP stack configured to satu-
rate the Broadcom NIC with minimal CPU utilization using
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Figure 7. Network Throughput

a lightweight TCP streaming network benchmark. The host
system was not the bottleneck in any test.

The RiceNIC was configured with custom packet pro-
cessing firmware that only uses 1 of the 2 available
PowerPC processors. This firmware is a baseline exam-
ple that manages the hardware units and enables basic NIC
functionality. Upon initialization, one PowerPC processor
boots a custom loader contained within the Virtex program-
ming. This loader allows the device driver to recognize the
RiceNIC and download the appropriate firmware.

Figure 7 shows the throughput of the RiceNIC, the
Broadcom NIC, and the theoretical Ethernet limit for a
wide range of TCP packet sizes. The MTU of the trans-
mitting interface was adjusted in each test to prevent the
host operating system from merging small TCP packets
into larger ones. For all results involving the Broadcom
NIC, checksum offloading and scatter/gather I/O were en-
abled, but TCP segmentation offloading was disabled. For
all RiceNIC results, all three features were disabled. Sup-
port for checksum offloading and scatter/gather require a
new driver and updated firmware, currently in development.

For packet sizes larger than 960 bytes, the RiceNIC per-
formance closely tracks the theoretical Ethernet limit. For
smaller packets, the RiceNIC performance trails the theoret-
ical limit, although the second unused PowerPC processor
could be employed to increase the NIC performance. Note
that the MTU was specifically lowered on the host system
to transmit small packets. Otherwise, most operating sys-
tems would merge several small TCP packets into one large
packet before delivering it to the NIC for transmission.

6 Case Studies

To demonstrate the flexibility of RiceNIC for network-
ing research, this section presents two case studies. First,

RiceNIC is modified to include network address transla-
tion (NAT) services. Obviously, NIC-based NAT services
are not novel, but their implementation does serve to show
how the RiceNIC firmware can be easily extended to imple-
ment additional services above and beyond basic network-
ing. Second, RiceNIC is modified to support direct access
from guest operating systems within a virtual machine mon-
itor. This much larger modification requires changes to both
the hardware and firmware. Both case studies show the flex-
ibility of RiceNIC for advanced research projects.

6.1 Network Address Translation

In its most common configuration, NAT allows many
systems on an internal network to share one address on an
external network [16]. A NAT device examines each TCP
packet in-flight and transparently rewrites its source or des-
tination port and address to preserve the appearance that
only 1 device is attached to the external network. The NAT
functionality adds per-packet overhead to the NIC in several
places. The headers of incoming and outgoing packets must
be processed and a mapping table searched to determine the
correct forwarding or dropping action for the NAT to per-
form. Finally, after updating the packet header based on the
search results, the IP and TCP checksums must be partially
recalculated, and the packet transferred to the internal or
external network.

The RiceNIC firmware was modified to perform NAT
services in which all internal nodes can initiate connections
to the external network, but external nodes can only initiate
connections to specific ports that are forwarded to internal
servers. All traffic not belonging to either connection typeis
dropped. A server with one RiceNIC and one conventional
NIC can then operate as a fully functioning NAT firewall.
The RiceNIC is the interface to the external network and the
conventional NIC is the interface to the internal network. IP
forwarding is enabled on the host Linux system to forward
all packets between the internal and external networks.

In this configuration, RiceNIC was able to sustain TCP
stream throughput within 3% of the theoretical Ethernet
limit for incoming and outgoing NAT traffic. The NAT
processing code is running on the same PowerPC proces-
sor that performs all of the NIC management tasks, and that
processor still has idle cycles remaining. In addition, the
second PowerPC processor is completely idle and available
for other tasks. While the implementation of a NAT mod-
ule on a NIC is not a novel application, it shows how the
RiceNIC firmware can easily be extended with new func-
tionality and that substantial processing resources existon
the NIC for more advanced research.
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6.2 Support for Virtualization

Virtual machine monitors (VMMs) allow multiple vir-
tual machines running on the same physical machine to
share hardware resources. To support networking, such
VMMs must virtualize the machine’s network interfaces by
presenting each virtual machine with a software interface
that is multiplexed onto the actual physical NIC. The over-
head of this software-based network virtualization severely
limits network performance.

The RiceNIC was used in research that eliminated the
performance limits of software multiplexing by providing
each virtual machine safe direct access to the network inter-
face [18]. To accomplish this, network traffic multiplexing
was performed directly on the RiceNIC, rather than in soft-
ware on the host. This required both hardware and firmware
modifications to RiceNIC. First, multiple contexts were
added to the SRAM, as described in Section 4.4. A conven-
tional network interface would only need a single context,
but in order for the NIC to directly communicate with mul-
tiple guest operating systems in a virtual machine monitor,
each guest needs its own set of mailbox resources. By mak-
ing each context the same size as a physical page, 4 KB, the
hypervisor can map each context into the address space of
a single guest operating system. Second, the firmware was
modified to independently communicate with the guest op-
erating systems through these contexts. Third, the firmware
was modified to perform network traffic multiplexing and
demultiplexing. This requires about 8 MB of additional
NIC memory, which easily fits within the 256 MB DDR
SODIMM. Finally, the hypervisor was modified to com-
municate with the firmware to provide memory protection
among the guest operating systems and ensure that they do
not direct the RiceNIC to transfer data to or from physical
memory that is not owned by that guest. Even with all of
the firmware modifications, it was still not necessary to use
the second PowerPC processor on the RiceNIC.

These modifications to the firmware and FPGA hardware
of the RiceNIC resulted in significant networking perfor-
mance improvements for virtual machine monitors. Both
the system throughput with a single guest OS, and the sys-
tem scaling as the number of guest OS’ was increased,
were improved by significant margins. (For final results,
see [18]). These improvements would be difficult, if not
impossible, to achieve with any other Ethernet network in-
terface, and show the advantages of using the RiceNIC for
research into future network interface architectures.

7 Conclusions

RiceNIC is a programmable and reconfigurable Gigabit
Ethernet network interface. RiceNIC provides significant
computation and storage resources that are largely unuti-

lized when performing the basic tasks of a network in-
terface. The remaining processing resources—including a
spare PowerPC processor and over 15 thousand reconfig-
urable logic elements—and memory resources—including
hundreds of megabytes of memory—are available to cus-
tomize the behavior of the RiceNIC. This makes the
RiceNIC an ideal platform for research into advanced net-
working architectures that require new services of the net-
work interface.

RiceNIC is meant to be an open platform for such net-
work interface research. The design is freely available for
public use. The Avnet development board is commercially
available and we provide the FPGA configuration and sup-
porting software, including firmware and device drivers.
Everything on the RiceNIC is easily modifiable and is ori-
ented towards experimentation. The serial console makes
the RiceNIC a friendly platform for research and educa-
tion, as the NIC can easily display status information and
the user can interactively control the NIC. The capabilities
of the platform also provide the opportunity for other tools
that are commonly only found on general-purpose systems.
For example, a timer-based statistical profiler is also avail-
able for RiceNIC.

The case studies of the previous section highlight the
usefulness of the RiceNIC. The NAT firewall was easily
implemented by simply modifying the firmware. The sup-
port for direct network access from guest operating systems
within virtual machine monitors was a much larger effort
that encompassed both firmware and hardware changes. In
both cases, RiceNIC provided more than enough computa-
tion and storage resources to provide the necessary perfor-
mance.

The Avnet Virtex-II Pro Development board has proved
to be an appropriate substrate for the implementation of
RiceNIC. However, the board limits the NIC to use PCI
and Gigabit Ethernet. In the future, we intend to investi-
gate the design of a similar board with PCI Express and
10 Gigabit Ethernet capabilities. Much of the design is ap-
plicable to such a system, as long as the Xilinx PCI and
MAC interfaces are upgraded appropriately. The MAC and
DMA units could otherwise remain unchanged, unless Xil-
inx changes the user interface to their units. Furthermore,
the PLB would need to be upgraded to a higher bandwidth
bus to accommodate the ten fold increase in network traffic.
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