

A Development Method for Reconfigurable Hardware Systems
With Real-Time Wavelet Image Compression Application

Jeffrey A. Shafer

Waleed W. Smari, Ph.D.
 Frank A. Scarpino, Ph.D.

Department of Electrical and Computer Engineering

University of Dayton
300 College Park Avenue, Dayton, Ohio 45469-0226

Keywords:

Reconfigurable Computing, Development Model,
Waterfall Model, Spiral Model, Image Compression,
Wavelet Transforms, FPGA

Abstract

The primary emphasis of this paper is the exploration
of a method of development that combines high-level
prototyping of algorithms with low-level hardware
development on FPGAs. The method of development was
applied to implement a wavelet image compression
algorithm as a real-world test. This development method is
based on standard software-engineering development
models because of the similarities in programming
hardware via hardware description languages and
traditional programming of general-purpose computers.
This method shows promise as a technique to implement
any computationally intensive algorithm in hardware, and
can both improve the quality of the end product and reduce
development time.

1. Introduction

System development processes have two primary
functions. First, they specify the order in which distinct
project stages are accomplished. Second, they specify the
criteria to transition from one development stage to the
next. Or, as Barry Boehm, creator of the spiral model,
wrote, they answer the questions “What shall we do next?”
and “How long shall we continue to do it?” Such
processes, when formalized and enforced, prevent
developers from jumping into coding without having a
clear and documented understanding of what system is to
be developed. Although ad-hoc design and coding may
succeed for small, clearly defined projects, such a method
is fraught with risks on real-life systems where the full
complexity and client requirements of a project may not be
initially evident.

The development process proposed here has
significant potential by enabling high-level software
languages to be used on general-purpose computers during
a system prototyping phase while still allowing for the end
result to be implemented in hardware for faster execution.

The use of high-level rapid prototyping tools early in the
development process can be of immense value in any
research or development program where deciding what
system to implement is as much the goal as actually
producing a working implementation. If the high-level
system is properly structured and designed, then the
prototype can be re-implemented in hardware through a
language such as VHDL.

To validate this development model, it is applied to a
real-world real-time wavelet image compression system.
Image and video compression is an integral part of today’s
digital environment. The compression process must be done
within a few tens of milliseconds or less for the process to
occur in “real-time.” Today’s general-purpose computers are
approaching the computational power necessary to perform
real-time video compression in software. The wealth of rapid
prototyping tools available for the general-purpose computer
greatly accelerates algorithm development and testing, even
if such tools limit overall performance. New algorithms,
however, almost always require more computational power
in order to increase the compression ratio while maintaining
high-quality visual results, keeping the tradeoff between
compression ratio and compression speed a perennial issue
[1].

In contrast to the software-based approach,
reconfigurable systems based on field-programmable gate
arrays (FPGAs) can be employed to utilize higher-quality
algorithms with greater computational needs and still deliver
real-time results [4]. By taking advantage of the parallelisms
available in hardware design, such systems can even
compress multiple input streams simultaneously, limited
primarily by the bus system providing the raw input data and
saving the compressed output streams [8]. While such
dedicated hardware can substantially accelerate the
compression process, system development is significantly
more complex. This not only increases the cost of the end
product, but also makes it more likely for software-based
solutions under simultaneous development to close the
performance gap as the current state-of-the-art computer
performance improves. Although higher-level hardware
description languages like VHDL and AHDL alleviate the
tedium of manual chip layout in producing dedicated
hardware systems, they cannot come close to approaching the

wealth of rapid-prototyping tools available in software [6].
Thus, what is needed is some way to take advantage of
high-level software environments early in development
while still producing a high-performance hardware
implementation as the final product.

 This paper will outline historical software
development models in Section 2, propose a new method
of development for reconfigurable hardware systems in
Section 3 and 4, and apply it to a real-world image
compression problem in Section 5.

2. Historical Development Models

The system development process proposed here
contains some elements from the widely publicized
“waterfall model” in computer-science fields, where the
top-most stage is completed first and fed into the
subsequent lower stage as the starting product. This
standardized model is shown in Figure 1.

Figure 1: Waterfall Development Model [5]

In the standard waterfall model, the initial
requirements and specifications stages serve to identify the
product that is to be created. In the design phase, the key
modules of this product and the relationships between the
modules are determined. Finally, in the remaining three
stages, the product is actually coded, tested, and released.
Each stage is completed in series. Ideally, the design phase
would be completely finished, properly documented, and
then handed to the coders who use it in the coding phase.

In the waterfall model, the earlier in the process that
problems are identified, the cheaper and easier the solution
will be [5]. It will always be easier to rework a problem in
the requirements phase than before the program
architecture has been designed, just as it will also be
cheaper to rework a problem in the design phase before the
program has been coded. Further, although it will always
be easier to rectify a problem in the testing phase before
the program has been released, it would have been far
cheaper to rectify that problem in the design phase.
Because of this increasing-costs hierarchy, a formal
method’s emphasis on complete system documentation
before coding has the potential to save significant
resources by encountering and fixing problems early on.

Recently, modified software development models have
been proposed with the purpose of, among others, making
product testing a continual part of the development process
instead of an ending step, or making accommodations for
program development on high-risk projects [5]. High-risk
projects are defined as projects where success is uncertain
upon starting, as the problem to be solved (such as an air
traffic control system) may be too unwieldy or complex to
program effectively, or where the development resources (i.e.
money) required for a successful implementation cannot be
initially estimated with any reasonable accuracy.

One new development model that allows for high-risk
projects is the spiral model as developed by Barry Boehm.
Rather than being document-centric like the waterfall model,
it relies heavily on prototypes to segment its various stages
and determine when the project should advance from one
stage to another [2]. The spiral model utilizes an overall
theme of evolutionary development with prototyping, but
depends on the waterfall model to actually complete each
prototype. Note that it is referred to as being “evolutionary”
in process rather than “incremental.” In an incremental
development process, the final end product is known at the
beginning of development, and each development stage
completes a known project module that was identified when
the project was initiated. Rather, in evolutionary
development, the project starts by addressing the design
feature that carries the highest risk of failure. As risks are
surmounted, new risks are unveiled and solved with each turn
of the spiral. Thus, the exact course the eventual design
solution will take is not known when the project is started.

As shown in Figure 2, the spiral model gets its name
because the development process starts at the center of the
spiral and proceeds radially outward in a clockwise direction.
As more turns of the spiral are completed, each loop builds
upon the results of the previous loops as the project evolves
towards completion.

Figure 2: Spiral Model of Software Development [2]

As Boehm describes, the radial dimension of the
model represents the total project cost to date, while the
angular dimension of the model represents the progress
made in completing the current stage of the cycle. Each
turn of the spiral model is a miniature waterfall model,
starting with the identification of the project objectives.
Because the spiral model uses a top-down approach, the
highest-priority features are implemented first. The
possible methods of implementation are studied, as well as
the constraints imposed by financial resources, time, or the
end-user. From this study, significant risks faced in
implementing these features are identified. To address
these risks, prototypes are built, tested, and presented to
the end-user to determine if the project risks have been
surmounted. If they have, the model proceeds to the next
turn of the spiral to implement the next most important
feature set and address their inherent risks. If, however, the
risks have not been surmounted, the current spiral must
either be repeated with a new prototype and different
design, or the project must be downscaled to a more
solvable complexity and size. The spiral model ends when
either the project is finished and successfully meets its
goals, or when the project is canceled after a prototype
fails a key design test.

One key benefit of the spiral model is that its
evolutionary “top-down” approach means that the most
significant and far-reaching product implementation risks
can be identified and resolved first. If the key risks are
surmounted, the project can continue and implement all of
the “detail work,” confident that such work is not being
done in vain. This is in contrast to the waterfall model
where a risk is not truly surmounted until the coding stage.
If this stage fails, all of the work done up to this point
(requirements, specifications, and design) is at risk and
must be reworked. With the spiral model, however, if a
prototype fails to surmount a risk, only that turn of the
spiral is at risk and must be redone, while all earlier turns
(presumably solving more important problems) are still
intact. Even at the worst case, where the project must be
abandoned due to unanticipated complexity or expense, the
spiral model will determine this fate far sooner than the
waterfall model, saving time and money. It is this theme of
allowance for risky projects, and its solution through the
use of prototypes and evolutionary development, that is
incorporated into the new hardware development method
presented later in this chapter.

3. Proposed Development Model

While such models are very useful in the software
development world, they have several key shortcomings
when applied to hardware development, particularly in
reconfigurable devices such as FPGAs. If you applied the
traditional waterfall model to hardware development, you
would start off by specifying the algorithm (“requirements
/ specifications phase”) and then lay out the broad

architecture of the FPGA system to be implemented (“design
phase”). Finally, the system would be realized in hardware by
programming in a language such as VHDL (“coding phase”).
Unfortunately, while driving straight to the hardware may be
possible for small development projects, it presents
significant risks for larger real-world projects. What if the
algorithms implemented do not produce the correct
mathematical results? What if the algorithms implemented to
not produce as “good” of results (via the applicable quality
benchmarks) as desired? What if the algorithms implemented
are too slow on hardware to satisfy the performance
requirements? Finding out after hardware implementation
that the algorithm is deficient in one (or more) of the above
ways is hardly useful. Although reconfigurable computing
(as compared to an ASIC) does provide the flexibility to
rectify these problems, a significant amount of time and
money has still been wasted in the low-level hardware
implementation that can only be partially recovered if the
existing algorithm can be “tweaked” into correctness.

With the risks inherent in hardware development, then,
the spiral model would seem to be a better choice. It too has
drawbacks, however. Recall that the spiral model as written
attempts an evolutionary design flow by attacking the
highest-risk items first. In a reconfigurable computing
project, speed, device capacity, and memory architecture
considerations often pose the largest risks in successfully
completing the project. To this end, the spiral model would
attempt a basic hardware implementation early in the project
cycle, and obtain client feedback based on that prototype.
Unfortunately, even a basic hardware prototype is far more
time consuming than a software prototype in a high-level
language, so if that spiral fails, significant time will have
been lost. Similarly, if the client makes many changes to the
hardware prototype they are first shown, it is very possible
that significant architectural changes will need to be made to
the prototype before it can be incorporated into the next
evolutionary stage of the project.

The system development process described here
attempts to surmount the previously mentioned risks in
hardware development by attacking them early in the process
through the use of software prototypes. Recall that the earlier
such risks are identified and solved, the lower the total
development cost. Such software prototypes also allow for
evolutionary development, as the client can see a working
product and make any necessary changes before the product
is implemented in hardware. This process assumes that the
end product should be a hardware implementation, although
“escape routes” are available at the end of certain stages in
case a hardware implementation proves to be either
unworkable (due to complexity or expense) or unnecessary
(due to rapid performance increases of general purpose
computers). This new development process contains four key
stages: Concept Development, Feasibility Study, Hardware
Emulation, and Hardware Implementation, as shown in
Figure 3.

Figure 3: System Development Process for Reconfigurable Computing

Inherent in the middle three stages of the

development process are elements from the standard
waterfall model, as denoted by the three grayscale sections
beneath the feasibility study, hardware emulation, and
hardware design sections. These “sub-processes” serve to
highlight how a design team might go about
accomplishing, for example, the feasibility study, through
a systematic process of defining specifications, coding,
testing, and soliciting feedback from clients. Note that
these plan-based sub-processes work best when the
requirements can be defined in advance and remain
relatively stable, changing only about one percent a month
[3]. Because of this, the waterfall model may not be
strictly applied to the feasibility study stage, where
requirements may not be fully known in advance. By the
time the hardware stage is reached, however, a more rigid
methodology like the waterfall model should be used
because the system requirements should be nearly fixed.

 Evolutionary development is incorporated into the
model via the use of the optional feedback loops shown
below the three middle stages of the development process.
Implemented with the same purpose as the spiral model,
these loops allow developers in these three stages to attack
the most risky element of the design first. For example, in
the feasibility study stage, the riskiest element of the
project would be examined first. Once that risk has been
overcome, the project is reevaluated and the feasibility
study continues on to the next riskiest element. The
solution to this project element may have been influenced
in some unanticipated way by the result from the previous
solution. By dynamically building upon previous results
and allowing for solutions which were not anticipated
when the project was initiated, the feedback loops are able
to go one step beyond the simple incremental development
discussed previously and achieve true evolutionary
development. If a risk proves insurmountable, the project
can be aborted or redesigned with the minimum amount of
lost resources. Or, once all the risks of the feasibility study
are addressed, the team can progress to the next step of the
development process.

4. Development Model: An In-Depth Look

4.1 – Concept Development
The first stage of the system development model is the

Concept Development stage. In this stage, the problem to be
solved is identified and various algorithms leading to a
solution are proposed. It is here that the problem is analyzed
to determine if a reconfigurable hardware implementation is
necessary. Does the performance requirements of the
problem justify the development time and expense of FPGA
design? Can a general-purpose computer be used instead? If
a general-purpose machine can be used, the system
development model is aborted, and a purely software-based
model (such as the waterfall or spiral model) is used instead.
If, however, the computational and timing needs of the
proposed algorithms cannot be satisfied by a general-purpose
machine, the system development model continues to the
feasibility stage.

4.2 – Feasibility Study
 In the previous stage, possible algorithmic solutions to a
problem have been identified. Here, these solutions are
verified for algorithmic correctness, not performance. In
essence, this stage is a high-level prototype of the system to
be developed. All algorithms to be evaluated are
implemented in a high level programming language such as
C++, Java, or a more mathematically oriented package such
as Matlab. This code is written to be easily designed and
modified for rapid testing and debugging, and is not
optimized for performance in any way that would obscure the
algorithmic intent of the code.

Note that the “feasibility” discussed in this section is
primarily focused on technical feasibility and not economic
or legal feasibility. Briefly, technical feasibility is concerned
with whether the project can successfully be developed given
the available resources and technology. In contrast, economic
feasibility is concerned with a cost-benefits analysis between
the development costs and the final projected revenue from
the product. Finally, legal feasibility deals with any liability
or patent issues that may stem from pursuing development of
the product [7]. These last two issues, while highly relevant
to product development, are outside the scope of this paper.

 Although the eventual goal of the system
development process is to design a working hardware
implementation of an algorithm, high-level software
languages, not low-level hardware description languages,
are used for this stage of the process. This is because low-
level languages such as VHDL are simply too unwieldy
and cumbersome to use when the goal is as much to
determine what algorithm should be implemented as
performing the actual implementation work. Although the
algorithm implementations at this stage should not be
optimized (a waste of time since the final goal is a
hardware implementation), easily-obtained performance
improvements could be taken within various software
environments with the goal of making the prototype more
usable and enabling demonstrations to the end-user.

Upon completion of the feasibility study phase, the
prototype is examined and compared to the specifications.
Is the right system being built? Can it still be completed
on time and on budget? Have similarly complex systems
been implemented on FPGAs before? In addition, the
prototype is tested with real-world test data. Do the
algorithms satisfy all non-speed related “quality” metrics?
Quality metrics envelop both quantifiable (e.g. Are the
mathematical results correct? Is the signal-to-noise ratio
high?) and non-quantifiable results (eg. Does the audio
sound good?). If not, this phase is repeated with new or
modified algorithms until the quality of the algorithms is
acceptable. In addition, this high-level simulation on a
general-purpose computer is examined to determine if it
satisfies (or come close to satisfying) the necessary
performance benchmarks. If so, an “escape route” is
possible at this point, as the high-level prototype may only
require small performance optimizations to meet the
client’s needs, rather than a full hardware implementation.

To complete the feasibility study, the prototype is
demonstrated to the client who can test it and require
corrections and additions to be made as necessary. This
allows the design to evolve towards the final solution
while making modifications to the final product is still
relatively cheap and easy. This final prototype examination
is the most important of the stage because the end-users
are often incapable of knowing exactly what system they
want, or are unable to express it with any degree of
precision. However, when the end-user is shown an actual
working prototype, it is much easier for them to determine
if the right system is being built. (i.e. the system that
fulfills all of their unstated objectives). This is in contrast
to what the developers can determine, which is whether the
system is being built correctly. (i.e. the system fulfills its
initial specifications). Note that this feedback process is
only possible if the prototype constructed is a complete
(sub)system. If it is purely a mathematical engine or some
other dedicated tool, extra software may be needed to
“wrap” the algorithm and interpret its results so that it can
be easily tested and demonstrated. If this is too time

consuming or impossible, then the project engineers must
interpret the results of the feasibility study and decide when
to move to the next stage of the development process.
Regardless, the feasibility study stage should continue until
all significant portions of the final system have been
prototyped and tested.

4.3 – Hardware Emulator

Once the prototype has been fully examined and tested,
a high-level to low-level mapping is begun in the Hardware
Emulator phase. Here, key algorithms in the existing high-
level software implementation are reworked to more
accurately simulate real-world hardware constraints. In
essence, this stage is a low level prototype of the system to be
developed. This prototype is still written in the same
language as the feasibility model, however, as there are still
significant risks to be addressed before authorizing the
development time and expense of the hardware
implementation.

In this development stage, multidimensional arrays in
the high-level implementation are replaced with single-
dimensional fixed-length linearly addressable models of the
actual memory available in the destination hardware. This is
because many reconfigurable computing systems have fixed
memory capacities in multiple banks, and it must be
determined if the algorithm previously modeled in a high-
level fashion can fit into a real-world system. If the
destination hardware and memory architecture has been
previous selected (or mandated), this model should reflect its
specifications. Otherwise, the designers make reasonable
decisions as to what the specifications and architecture of the
destination hardware will be. After completing this stage of
the development process, a final list of hardware
requirements will be generated which can greatly accelerate
the selection of appropriate devices.

Element-to-element linear operators replace vectorized
operations, which were utilized in the high-level
implementation for speed of execution and algorithmic
simplicity. If these operations can be executed concurrently,
special comment blocks are placed in the code to relay that
information to the hardware designers. High-level
mathematical operations such as multiplication or division
are replaced (when possible) with simple bit shift operations.
If such a replacement is not easily possible (due to fractional
results that must be maintained to preserve algorithmic
integrity), notes are taken to document the need for floating-
point hardware in the final design.

 If significant design changes were made between the
high-level prototype in the feasibility study stage and the
low-level prototype in the hardware emulator, the current
prototype can be demonstrated to the client again for further
feedback. If, however, the only changes made were done to
closely resemble the actual device hardware, it would be
redundant to show the client what is, on the surface, the same
product.

In the hardware emulator, benchmarks can be
gathered which will determine which hardware device to
utilize, or whether the specified device will be sufficiently
large or fast to accommodate the design. Because the
matrices in the high-level simulation have been converted
to one-dimensional fixed arrays, it is a simple task in the
emulator environment to track the number of memory
accesses required to run the algorithm on real-world test
data. Similarly, it is straightforward to wrap the algorithm
with code in order to count the number of calculations
required to complete the test suite, as well as determine the
relative frequency of each arithmetic or logical operation.
If floating-point calculations must be used, research should
be undertaken to determine what pre-built or custom-built
libraries could be used in the hardware implementation
stage, and what the performance and cost penalties of
those options will be.

Based on the memory access and computation
statistics, performance predictions about the algorithm’s
actual performance on real hardware are made. Based on
these results, the developers can determine which
algorithms, if any, should be implemented in hardware. If
no algorithms can satisfy the necessary performance
requirements on the specified devices, the development
process returns to the concept development stage to
research new algorithms in search of an economical
solution. But, if an algorithm has been identified as being a
likely success on a real-world device package, it is
programmed into hardware in the Hardware
Implementation stage.

4.4 – Hardware Implementation

In the final stage of the system development process,
the algorithms are implemented on FPGAs for maximum
computational performance and flexibility. At this point,
the algorithms have been verified in the high-level
simulator for mathematical correctness and any applicable
“quality” metrics. In addition, the algorithms have been
tested in the low-level simulator to insure that they will fit
in the hardware system chosen with regards to memory
size, architecture, and computational performance
limitations. Thus, the majority of risks inherent in
hardware development should have already been addressed
in the two system prototypes already created.

For the hardware implementation phase a hardware
description language such as VHDL is used. Vectorized
operations that were previously converted to linear
element-by-element operations in the hardware emulator
are now either converted to concurrent operations here (to
exploit the parallelisms possible in hardware), or are
included as part of finite state machines if sequential
operation must be maintained. If necessary, floating-point
libraries are utilized to achieve the same mathematical
results as produced by the prototypes.

The hardware implementation phase incorporates the
same feedback loop structure found in the feasibility study
and hardware emulator stages. Thus, as mentioned
previously, the highest-risk elements should be addressed
first. For example, if the entire design depends upon the
implementation of a high performance ALU, that element
should be implemented in hardware first, and then examined
and tested. If it meets its requirements, the next riskiest
element of the implementation stage should begin, since that
element may depend or interact with previously unknown
attributes of the ALU. Thus, the design evolves towards a
final solution based upon knowledge that may not have been
available when the project was initiated.

4.5 – Summary
 One of the key advantages of this development process
is that all algorithm research and development is done in the
feasibility study stage through the use of high-level software
prototypes. This is because it is significantly faster and
cheaper to test out new ideas and build prototypes in software
than in a low-level hardware description language. In
addition, the majority of client feedback is solicited and
applied during this stage, as opposed to later on in the
development process where changes become significantly
more expensive and time consuming. This is in contrast to
the traditional waterfall or spiral models where the client
would not see a prototype (or make changes to one) until
after at least a partial hardware implementation had been
completed. If the project objectives change significantly as a
result of knowledge learned when making this prototype,
none of the time involved in a hardware implementation will
be lost, because that implementation is done later in the
development process.

 Like the spiral model, most of the far-reaching product
implementation risks are examined first in the feasibility
study stage of this model. After this stage is complete, all of
the algorithms and processes necessary for a successful
solution have been verified. Many of the remaining risks,
mostly involving whether the algorithms will properly fit on
hardware devices, are examined next in the hardware
emulation phase. Finally, confident that the key risks have
been surmounted, the project can continue and implement all
of the “detail work” of hardware development confident that
such work is not being done in vain. In addition, evolutionary
development like that found in the spiral model is also
incorporated into this development process through the use of
feedback loops. These loops allow developers to attack the
highest-risk project elements at each stage of the process
first. Then, subsequent project elements can incorporated
knowledge gained from the riskiest project element;
information that was likely not known or even considered
when the project was initiated.

 Because one of the key strengths of reconfigurable
computing is the ability of the developers to modify and
enhance (or correct) the product once it is in the field, this
system development model allows for ongoing maintenance.

As new product objectives are identified, it is a
straightforward process to simply repeat the development
process shown in Figure 3 on a smaller scale. Because the
original high-level and low-level prototypes are still in
existence, they can simply be altered at each stage of the
process to gain a full understanding of the modifications
that need to be made to the hardware implementation.

5. Application of Model to Wavelet Image Compression

The system development process here was applied to
develop and implement an optimized integer-based Haar
wavelet transform, the Super-Efficient Haar Transform
(SEHT) [9]. This optimized transform eliminates the
separate row and column transformations inherent in
ordinary wavelet image compression algorithms.

 The development and implementation of the SEHT
algorithm followed the system development process
outlined previously. The specific project flow is detailed
in Figure 4.

Figure 4: Image Compression Application

First, the algorithm was conceived in the Concept
Development stage as a method to cut the number of
memory accesses in half by combining the row and
column transformations. The concept was programmed in
Matlab in the Feasibility Study phase. The Matlab
environment is a vector and matrix-based calculation
engine upon which a wide variety of specialized scripts
can be run. It was specifically chosen for this project
because of its C-like high-level programming language
that can natively manipulate the large matrices inherent in
image processing. This helps insure transparent code,
which aids in rapid development and design testing.

 In the Feasibility Study stage, the SEHT algorithm
was tested to see if the relative performance improvements
over the standard Haar wavelet transform were worth
pursuing. The results, shown in Figure 5, indicated that
further algorithm development was justified.

Algorithm Computation Time

0

50

100

150

200

250

300

len
a.b

mp

pe
pp

ers
.bm

p

sa
il.b

mp

sa
il_s

ub
se

t.b
mp

tuli
ps

.bm
p

Test Image

C
o

m
p

u
ta

ti
o

n
 T

im
e

HAAR (sec)

SEHT (sec)

Figure 5: Performance Improvement from Haar to SEHT
Wavelet Transform

Based on the promising performance improvements in a
high-level environment, the Hardware Emulator phase was
initiated. Here, a high-level to low-level mapping was begun
with the goal of reworking existing algorithms in the high-
level software implementation to more accurately simulate
real-world hardware constraints. Vectorized operations in the
Matlab code (utilized for speed of execution and algorithmic
simplicity) were replaced with element-to-element linear
operators. At locations where these operations could be
executed concurrently, special comment blocks were placed
in the code to preserve that information for the hardware
implementation phase. High-level mathematical operations
such as multiplication or division were replaced with simple
bit shift operations. Due to the integer nature of the SEHT
algorithm, no floating-point hardware was necessary for the
emulator or final hardware implementation.

Also in the emulator stage, multidimensional arrays in
the high-level implementation were replaced with single-
dimensional fixed-length linearly addressable models of the
actual memory available in the destination hardware. This is
because many reconfigurable computing systems have fixed
memory capacities in multiple banks, and one of the goals of
this stage is to determine if the SEHT algorithm previously
modeled in a high-level fashion can fit into a real-world
system. In this example, the SLAAC development system (a
rapid prototyping PCI board with three FPGAs and on-board
memory) had been previously purchased for use in real-time
applications. Thus, this hardware emulator model reflected its
specifications.

As this point in this research effort, alternate methods
for structuring the data in memory and managing sequential
and concurrent operations were studied. This allowed the
hardware implementation stage to proceed smoothly based
upon a fully-realized design. Of all the algorithms that made
up the image compression process, the SEHT algorithm and
its supporting memory architecture was selected to be the
first algorithm implanted in hardware due to its significant
computational complexity and possibility for greater
performance improvements.

Better Wavelet
Transform

(Feasibility Study)
Matlab Native Functions

Matrix-Based Memory Structure
SEHT Transform

(Hardware Emulation)

Matlab Building Blocks (e.g. Bit Shifts)

Linear Memory Structure
SEHT Transform

(Hardware Implementation)

(Concept Development)

VHDL

In the final stage of the system development process,
the Hardware Implementation, the key image compression
algorithms were implemented in VHDL on FPGAs for
maximum computational performance and flexibility. At
this point, the algorithms have been verified in the high-
level simulator for mathematical correctness and any
applicable “quality” metrics. In addition, the algorithms
have been tested in the low-level simulator to insure that
they will fit the SLAAC board with regards to memory
size and architecture as well as in regards to the
computational performance limitations of the device. Thus,
the majority of risks inherent in hardware development
have already been addressed in the two system prototypes
already created.

For the hardware implementation phase VHDL is
used as the appropriate hardware description language
because of the availability of the necessary compiler and
supporting place and route software. Vectorized operations
that were previously converted to linear element-by-
element operations in the hardware emulator are now
either converted to concurrent operations here (to exploit
the parallelisms possible in hardware), or are included as
part of finite state machines if sequential operation must be
maintained.

The hardware implementation phase incorporates the
same feedback loop structure found in the feasibility study
and hardware emulator stages. Thus, as mentioned
previously, the highest-risk elements should be addressed
first. In this case, the overall memory structure and routing
was implemented first. Once it was evaluated for correctly
storing and routing data, the next riskiest element of the
implementation stage, the SEHT transformation algorithm
was started, since that element may depend or interact with
previously unknown attributes of the memory architecture.
Thus, the design evolved towards a final solution based
upon knowledge that may not have been available when
the project was initiated.

6. Concluding Remarks

When applied to the real-world image compression
problem, the system development process proposed here
demonstrated several advantages. First and foremost was
the ease of algorithm development with the high-level
Matlab language. The transparency of the high-level code
and the integrated debugger made it easy to optimize the
SEHT algorithm and the supporting data systems.

Such tools also proved very useful when, during
testing at the emulator stage, the algorithm implementation
was found to have subtle problems in the memory structure
and re-use of certain memory elements; problems that
were not present in the pure high-level simulation. Because
the emulator was still in the Matlab environment, however,
these errors were much easier to locate through the use of
the integrated debugger. Thus, they were solved before the

time-consuming hardware implementation stage, at which
point such logic problems would have been effectively
obscured by implementation details and would have been
much more costly to locate and fix.

The use of evolutionary development to build upon
recently gained experience was of particular value in the
hardware implementation stage. Because all the particulars of
the implementation were not fixed early in the project, the
developers were able to take advantage of the algorithmic
fixes and optimizations learned in the first two stages of the
process. Thus, when the hardware implementation was
reached, little was left to chance, and little knowledge was
wasted.

Overall, the use of high-level rapid prototyping tools
early in the development process can be valuable in any
research or development program where deciding what
system to implement is as much the goal as actually
producing a working implementation. If the high-level
system is properly structured and designed, then this real-
world problem showed that the prototype can be efficiently
re-implemented in hardware through a language such as
VHDL.

7. References

[1] Balster, E.J., Scarpino, F.A., and W.W. Smari,
“Wavelet Transform for Real-Time Image
Compression Using FPGAs,” 12th IASTED
International Conference on Parallel and Distributed
Computing and Systems, Las Vegas, Nevada, Nov. 6 –
9, 2000, pp. 232-238.

[2] Boehm, B., "A Spiral Model of Software Development
and Enhancement", IEEE Computer, Vol.21, #5, May
1988, pp. 61-72

[3] Boehm, B., "Get Ready for Agile Methods, with Care",
IEEE Computer, Vol.35, #1, January 2002, pp. 64-69

[4] DeHon, A., “The Density Advantage of Configurable
Computing,” IEEE Computer, Vol 33, No. 4, April
2000, pp. 41-49

[5] Hamlet, D. and J. Maybee, The Engineering of
Software, Addison-Wesley, 2001

[6] Hutchings, B.L. and B.E. Nelson, “Using General-
Purpose Programming Languages for FPGA Design,”
37th Design Automation Conference, Los Angeles, CA,
June 5-9, 2000, pp. 561-566

[7] Pressman, R.S., Software Engineering, A
Practitioner’s Approach, 4th Edition, McGraw Hill,
1997

[8] Swan, R. et al., “Re-configurable Computing,” ACM
Crossroads, Issue 5.3, Spring 1999

[9] Turri, W, “Design And Hardware Implementation Of A
Wavelet-Based Color Image Compression System,”
University of Dayton Masters Thesis, May 2002

