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Abstract 
 

The primary emphasis of this paper is the exploration 
of a method of development that combines high-level 
prototyping of algorithms with low-level hardware 
development on FPGAs. The method of development was 
applied to implement a wavelet image compression 
algorithm as a real-world test. This development method is 
based on standard software-engineering development 
models because of the similarities in programming 
hardware via hardware description languages and 
traditional programming of general-purpose computers. 
This method shows promise as a technique to implement 
any computationally intensive algorithm in hardware, and 
can both improve the quality of the end product and reduce 
development time.  
 
1. Introduction 
 

System development processes have two primary 
functions. First, they specify the order in which distinct 
project stages are accomplished. Second, they specify the 
criteria to transition from one development stage to the 
next. Or, as Barry Boehm, creator of the spiral model, 
wrote, they answer the questions “What shall we do next?” 
and “How long shall we continue to do it?” Such 
processes, when formalized and enforced, prevent 
developers from jumping into coding without having a 
clear and documented understanding of what system is to 
be developed. Although ad-hoc design and coding may 
succeed for small, clearly defined projects, such a method 
is fraught with risks on real-life systems where the full 
complexity and client requirements of a project may not be 
initially evident. 
 

The development process proposed here has 
significant potential by enabling high-level software 
languages to be used on general-purpose computers during 
a system prototyping phase while still allowing for the end 
result to be implemented in hardware for faster execution. 

The use of high-level rapid prototyping tools early in the 
development process can be of immense value in any 
research or development program where deciding what 
system to implement is as much the goal as actually 
producing a working implementation. If the high-level 
system is properly structured and designed, then the 
prototype can be re-implemented in hardware through a 
language such as VHDL. 
 

To validate this development model, it is applied to a 
real-world real-time wavelet image compression system. 
Image and video compression is an integral part of today’s 
digital environment. The compression process must be done 
within a few tens of milliseconds or less for the process to 
occur in “real-time.” Today’s general-purpose computers are 
approaching the computational power necessary to perform 
real-time video compression in software. The wealth of rapid 
prototyping tools available for the general-purpose computer 
greatly accelerates algorithm development and testing, even 
if such tools limit overall performance. New algorithms, 
however, almost always require more computational power 
in order to increase the compression ratio while maintaining 
high-quality visual results, keeping the tradeoff between 
compression ratio and compression speed a perennial issue 
[1].  
 

In contrast to the software-based approach, 
reconfigurable systems based on field-programmable gate 
arrays (FPGAs) can be employed to utilize higher-quality 
algorithms with greater computational needs and still deliver 
real-time results [4]. By taking advantage of the parallelisms 
available in hardware design, such systems can even 
compress multiple input streams simultaneously, limited 
primarily by the bus system providing the raw input data and 
saving the compressed output streams [8]. While such 
dedicated hardware can substantially accelerate the 
compression process, system development is significantly 
more complex. This not only increases the cost of the end 
product, but also makes it more likely for software-based 
solutions under simultaneous development to close the 
performance gap as the current state-of-the-art computer 
performance improves. Although higher-level hardware 
description languages like VHDL and AHDL alleviate the 
tedium of manual chip layout in producing dedicated 
hardware systems, they cannot come close to approaching the 



wealth of rapid-prototyping tools available in software [6].  
Thus, what is needed is some way to take advantage of 
high-level software environments early in development 
while still producing a high-performance hardware 
implementation as the final product. 
 

 This paper will outline historical software 
development models in Section 2, propose a new method 
of development for reconfigurable hardware systems in 
Section 3 and 4, and apply it to a real-world image 
compression problem in Section 5.  
 
2. Historical Development Models 
 

The system development process proposed here 
contains some elements from the widely publicized 
“waterfall model” in computer-science fields, where the 
top-most stage is completed first and fed into the 
subsequent lower stage as the starting product. This 
standardized model is shown in Figure 1. 

 
Figure 1: Waterfall Development Model [5] 
 

In the standard waterfall model, the initial 
requirements and specifications stages serve to identify the 
product that is to be created. In the design phase, the key 
modules of this product and the relationships between the 
modules are determined.  Finally, in the remaining three 
stages, the product is actually coded, tested, and released. 
Each stage is completed in series. Ideally, the design phase 
would be completely finished, properly documented, and 
then handed to the coders who use it in the coding phase. 
 

In the waterfall model, the earlier in the process that 
problems are identified, the cheaper and easier the solution 
will be [5]. It will always be easier to rework a problem in 
the requirements phase than before the program 
architecture has been designed, just as it will also be 
cheaper to rework a problem in the design phase before the 
program has been coded. Further, although it will always 
be easier to rectify a problem in the testing phase before 
the program has been released, it would have been far 
cheaper to rectify that problem in the design phase. 
Because of this increasing-costs hierarchy, a formal 
method’s emphasis on complete system documentation 
before coding has the potential to save significant 
resources by encountering and fixing problems early on. 
 

Recently, modified software development models have 
been proposed with the purpose of, among others, making 
product testing a continual part of the development process 
instead of an ending step, or making accommodations for 
program development on high-risk projects [5].  High-risk 
projects are defined as projects where success is uncertain 
upon starting, as the problem to be solved (such as an air 
traffic control system) may be too unwieldy or complex to 
program effectively, or where the development resources (i.e. 
money) required for a successful implementation cannot be 
initially estimated with any reasonable accuracy.  
 

One new development model that allows for high-risk 
projects is the spiral model as developed by Barry Boehm. 
Rather than being document-centric like the waterfall model, 
it relies heavily on prototypes to segment its various stages 
and determine when the project should advance from one 
stage to another [2]. The spiral model utilizes an overall 
theme of evolutionary development with prototyping, but 
depends on the waterfall model to actually complete each 
prototype. Note that it is referred to as being “evolutionary” 
in process rather than “incremental.”  In an incremental 
development process, the final end product is known at the 
beginning of development, and each development stage 
completes a known project module that was identified when 
the project was initiated. Rather, in evolutionary 
development, the project starts by addressing the design 
feature that carries the highest risk of failure. As risks are 
surmounted, new risks are unveiled and solved with each turn 
of the spiral. Thus, the exact course the eventual design 
solution will take is not known when the project is started.  
 

As shown in Figure 2, the spiral model gets its name 
because the development process starts at the center of the 
spiral and proceeds radially outward in a clockwise direction. 
As more turns of the spiral are completed, each loop builds 
upon the results of the previous loops as the project evolves 
towards completion. 

 

 
Figure 2: Spiral Model of Software Development [2] 



As Boehm describes, the radial dimension of the 
model represents the total project cost to date, while the 
angular dimension of the model represents the progress 
made in completing the current stage of the cycle. Each 
turn of the spiral model is a miniature waterfall model, 
starting with the identification of the project objectives. 
Because the spiral model uses a top-down approach, the 
highest-priority features are implemented first. The 
possible methods of implementation are studied, as well as 
the constraints imposed by financial resources, time, or the 
end-user. From this study, significant risks faced in 
implementing these features are identified. To address 
these risks, prototypes are built, tested, and presented to 
the end-user to determine if the project risks have been 
surmounted. If they have, the model proceeds to the next 
turn of the spiral to implement the next most important 
feature set and address their inherent risks. If, however, the 
risks have not been surmounted, the current spiral must 
either be repeated with a new prototype and different 
design, or the project must be downscaled to a more 
solvable complexity and size. The spiral model ends when 
either the project is finished and successfully meets its 
goals, or when the project is canceled after a prototype 
fails a key design test.  
  

One key benefit of the spiral model is that its 
evolutionary “top-down” approach means that the most 
significant and far-reaching product implementation risks 
can be identified and resolved first. If the key risks are 
surmounted, the project can continue and implement all of 
the “detail work,” confident that such work is not being 
done in vain.  This is in contrast to the waterfall model 
where a risk is not truly surmounted until the coding stage. 
If this stage fails, all of the work done up to this point 
(requirements, specifications, and design) is at risk and 
must be reworked. With the spiral model, however, if a 
prototype fails to surmount a risk, only that turn of the 
spiral is at risk and must be redone, while all earlier turns 
(presumably solving more important problems) are still 
intact. Even at the worst case, where the project must be 
abandoned due to unanticipated complexity or expense, the 
spiral model will determine this fate far sooner than the 
waterfall model, saving time and money. It is this theme of 
allowance for risky projects, and its solution through the 
use of prototypes and evolutionary development, that is 
incorporated into the new hardware development method 
presented later in this chapter. 
 
3. Proposed Development Model 
 

While such models are very useful in the software 
development world, they have several key shortcomings 
when applied to hardware development, particularly in 
reconfigurable devices such as FPGAs. If you applied the 
traditional waterfall model to hardware development, you 
would start off by specifying the algorithm (“requirements 
/ specifications phase”) and then lay out the broad 

architecture of the FPGA system to be implemented (“design 
phase”). Finally, the system would be realized in hardware by 
programming in a language such as VHDL (“coding phase”). 
Unfortunately, while driving straight to the hardware may be 
possible for small development projects, it presents 
significant risks for larger real-world projects. What if the 
algorithms implemented do not produce the correct 
mathematical results? What if the algorithms implemented to 
not produce as “good” of results (via the applicable quality 
benchmarks) as desired? What if the algorithms implemented 
are too slow on hardware to satisfy the performance 
requirements?  Finding out after hardware implementation 
that the algorithm is deficient in one (or more) of the above 
ways is hardly useful. Although reconfigurable computing 
(as compared to an ASIC) does provide the flexibility to 
rectify these problems, a significant amount of time and 
money has still been wasted in the low-level hardware 
implementation that can only be partially recovered if the 
existing algorithm can be “tweaked” into correctness.  
 

With the risks inherent in hardware development, then, 
the spiral model would seem to be a better choice. It too has 
drawbacks, however. Recall that the spiral model as written 
attempts an evolutionary design flow by attacking the 
highest-risk items first. In a reconfigurable computing 
project, speed, device capacity, and memory architecture 
considerations often pose the largest risks in successfully 
completing the project. To this end, the spiral model would 
attempt a basic hardware implementation early in the project 
cycle, and obtain client feedback based on that prototype. 
Unfortunately, even a basic hardware prototype is far more 
time consuming than a software prototype in a high-level 
language, so if that spiral fails, significant time will have 
been lost. Similarly, if the client makes many changes to the 
hardware prototype they are first shown, it is very possible 
that significant architectural changes will need to be made to 
the prototype before it can be incorporated into the next 
evolutionary stage of the project. 
 

The system development process described here 
attempts to surmount the previously mentioned risks in 
hardware development by attacking them early in the process 
through the use of software prototypes.  Recall that the earlier 
such risks are identified and solved, the lower the total 
development cost.  Such software prototypes also allow for 
evolutionary development, as the client can see a working 
product and make any necessary changes before the product 
is implemented in hardware. This process assumes that the 
end product should be a hardware implementation, although 
“escape routes” are available at the end of certain stages in 
case a hardware implementation proves to be either 
unworkable (due to complexity or expense) or unnecessary 
(due to rapid performance increases of general purpose 
computers). This new development process contains four key 
stages: Concept Development, Feasibility Study, Hardware 
Emulation, and Hardware Implementation, as shown in 
Figure 3. 



 
Figure 3: System Development Process for Reconfigurable Computing 

 
Inherent in the middle three stages of the 

development process are elements from the standard 
waterfall model, as denoted by the three grayscale sections 
beneath the feasibility study, hardware emulation, and 
hardware design sections. These “sub-processes” serve to 
highlight how a design team might go about 
accomplishing, for example, the feasibility study, through 
a systematic process of defining specifications, coding, 
testing, and soliciting feedback from clients. Note that 
these plan-based sub-processes work best when the 
requirements can be defined in advance and remain 
relatively stable, changing only about one percent a month 
[3]. Because of this, the waterfall model may not be 
strictly applied to the feasibility study stage, where 
requirements may not be fully known in advance. By the 
time the hardware stage is reached, however, a more rigid 
methodology like the waterfall model should be used 
because the system requirements should be nearly fixed. 
 

 Evolutionary development is incorporated into the 
model via the use of the optional feedback loops shown 
below the three middle stages of the development process. 
Implemented with the same purpose as the spiral model, 
these loops allow developers in these three stages to attack 
the most risky element of the design first.  For example, in 
the feasibility study stage, the riskiest element of the 
project would be examined first. Once that risk has been 
overcome, the project is reevaluated and the feasibility 
study continues on to the next riskiest element. The 
solution to this project element may have been influenced 
in some unanticipated way by the result from the previous 
solution. By dynamically building upon previous results 
and allowing for solutions which were not anticipated 
when the project was initiated, the feedback loops are able 
to go one step beyond the simple incremental development 
discussed previously and achieve true evolutionary 
development. If a risk proves insurmountable, the project 
can be aborted or redesigned with the minimum amount of 
lost resources. Or, once all the risks of the feasibility study 
are addressed, the team can progress to the next step of the 
development process. 
 
 

4. Development Model: An In-Depth Look 
 

4.1 – Concept Development 
The first stage of the system development model is the 

Concept Development stage. In this stage, the problem to be 
solved is identified and various algorithms leading to a 
solution are proposed. It is here that the problem is analyzed 
to determine if a reconfigurable hardware implementation is 
necessary. Does the performance requirements of the 
problem justify the development time and expense of FPGA 
design?  Can a general-purpose computer be used instead?  If 
a general-purpose machine can be used, the system 
development model is aborted, and a purely software-based 
model (such as the waterfall or spiral model) is used instead. 
If, however, the computational and timing needs of the 
proposed algorithms cannot be satisfied by a general-purpose 
machine, the system development model continues to the 
feasibility stage. 
 
4.2 – Feasibility Study 
 In the previous stage, possible algorithmic solutions to a 
problem have been identified. Here, these solutions are 
verified for algorithmic correctness, not performance. In 
essence, this stage is a high-level prototype of the system to 
be developed. All algorithms to be evaluated are 
implemented in a high level programming language such as 
C++, Java, or a more mathematically oriented package such 
as Matlab. This code is written to be easily designed and 
modified for rapid testing and debugging, and is not 
optimized for performance in any way that would obscure the 
algorithmic intent of the code.  
 

Note that the “feasibility” discussed in this section is 
primarily focused on technical feasibility and not economic 
or legal feasibility.  Briefly, technical feasibility is concerned 
with whether the project can successfully be developed given 
the available resources and technology. In contrast, economic 
feasibility is concerned with a cost-benefits analysis between 
the development costs and the final projected revenue from 
the product.  Finally, legal feasibility deals with any liability 
or patent issues that may stem from pursuing development of 
the product [7]. These last two issues, while highly relevant 
to product development, are outside the scope of this paper. 
 



 Although the eventual goal of the system 
development process is to design a working hardware 
implementation of an algorithm, high-level software 
languages, not low-level hardware description languages, 
are used for this stage of the process. This is because low-
level languages such as VHDL are simply too unwieldy 
and cumbersome to use when the goal is as much to 
determine what algorithm should be implemented as 
performing the actual implementation work. Although the 
algorithm implementations at this stage should not be 
optimized (a waste of time since the final goal is a 
hardware implementation), easily-obtained performance 
improvements could be taken within various software 
environments with the goal of making the prototype more 
usable and enabling demonstrations to the end-user. 
 

Upon completion of the feasibility study phase, the 
prototype is examined and compared to the specifications.  
Is the right system being built?  Can it still be completed 
on time and on budget? Have similarly complex systems 
been implemented on FPGAs before?  In addition, the 
prototype is tested with real-world test data. Do the 
algorithms satisfy all non-speed related “quality” metrics? 
Quality metrics envelop both quantifiable (e.g. Are the 
mathematical results correct? Is the signal-to-noise ratio 
high?) and non-quantifiable results (eg. Does the audio 
sound good?). If not, this phase is repeated with new or 
modified algorithms until the quality of the algorithms is 
acceptable.  In addition, this high-level simulation on a 
general-purpose computer is examined to determine if it 
satisfies (or come close to satisfying) the necessary 
performance benchmarks.  If so, an “escape route” is 
possible at this point, as the high-level prototype may only 
require small performance optimizations to meet the 
client’s needs, rather than a full hardware implementation.  
 

To complete the feasibility study, the prototype is 
demonstrated to the client who can test it and require 
corrections and additions to be made as necessary. This 
allows the design to evolve towards the final solution 
while making modifications to the final product is still 
relatively cheap and easy. This final prototype examination 
is the most important of the stage because the end-users 
are often incapable of knowing exactly what system they 
want, or are unable to express it with any degree of 
precision. However, when the end-user is shown an actual 
working prototype, it is much easier for them to determine 
if the right system is being built. (i.e. the system that 
fulfills all of their unstated objectives). This is in contrast 
to what the developers can determine, which is whether the 
system is being built correctly. (i.e. the system fulfills its 
initial specifications). Note that this feedback process is 
only possible if the prototype constructed is a complete 
(sub)system. If it is purely a mathematical engine or some 
other dedicated tool, extra software may be needed to 
“wrap” the algorithm and interpret its results so that it can 
be easily tested and demonstrated. If this is too time 

consuming or impossible, then the project engineers must 
interpret the results of the feasibility study and decide when 
to move to the next stage of the development process. 
Regardless, the feasibility study stage should continue until 
all significant portions of the final system have been 
prototyped and tested. 
 
4.3 – Hardware Emulator 

Once the prototype has been fully examined and tested, 
a high-level to low-level mapping is begun in the Hardware 
Emulator phase. Here, key algorithms in the existing high-
level software implementation are reworked to more 
accurately simulate real-world hardware constraints. In 
essence, this stage is a low level prototype of the system to be 
developed. This prototype is still written in the same 
language as the feasibility model, however, as there are still 
significant risks to be addressed before authorizing the 
development time and expense of the hardware 
implementation.  
 

In this development stage, multidimensional arrays in 
the high-level implementation are replaced with single-
dimensional fixed-length linearly addressable models of the 
actual memory available in the destination hardware. This is 
because many reconfigurable computing systems have fixed 
memory capacities in multiple banks, and it must be 
determined if the algorithm previously modeled in a high-
level fashion can fit into a real-world system. If the 
destination hardware and memory architecture has been 
previous selected (or mandated), this model should reflect its 
specifications. Otherwise, the designers make reasonable 
decisions as to what the specifications and architecture of the 
destination hardware will be. After completing this stage of 
the development process, a final list of hardware 
requirements will be generated which can greatly accelerate 
the selection of appropriate devices.  
 

Element-to-element linear operators replace vectorized 
operations, which were utilized in the high-level 
implementation for speed of execution and algorithmic 
simplicity. If these operations can be executed concurrently, 
special comment blocks are placed in the code to relay that 
information to the hardware designers. High-level 
mathematical operations such as multiplication or division 
are replaced (when possible) with simple bit shift operations. 
If such a replacement is not easily possible (due to fractional 
results that must be maintained to preserve algorithmic 
integrity), notes are taken to document the need for floating-
point hardware in the final design. 
 

  If significant design changes were made between the 
high-level prototype in the feasibility study stage and the 
low-level prototype in the hardware emulator, the current 
prototype can be demonstrated to the client again for further 
feedback. If, however, the only changes made were done to 
closely resemble the actual device hardware, it would be 
redundant to show the client what is, on the surface, the same 
product. 



In the hardware emulator, benchmarks can be 
gathered which will determine which hardware device to 
utilize, or whether the specified device will be sufficiently 
large or fast to accommodate the design. Because the 
matrices in the high-level simulation have been converted 
to one-dimensional fixed arrays, it is a simple task in the 
emulator environment to track the number of memory 
accesses required to run the algorithm on real-world test 
data.  Similarly, it is straightforward to wrap the algorithm 
with code in order to count the number of calculations 
required to complete the test suite, as well as determine the 
relative frequency of each arithmetic or logical operation. 
If floating-point calculations must be used, research should 
be undertaken to determine what pre-built or custom-built 
libraries could be used in the hardware implementation 
stage, and what the performance and cost penalties of 
those options will be. 
 

Based on the memory access and computation 
statistics, performance predictions about the algorithm’s 
actual performance on real hardware are made. Based on 
these results, the developers can determine which 
algorithms, if any, should be implemented in hardware. If 
no algorithms can satisfy the necessary performance 
requirements on the specified devices, the development 
process returns to the concept development stage to 
research new algorithms in search of an economical 
solution. But, if an algorithm has been identified as being a 
likely success on a real-world device package, it is 
programmed into hardware in the Hardware 
Implementation stage. 
 
4.4 – Hardware Implementation 

In the final stage of the system development process, 
the algorithms are implemented on FPGAs for maximum 
computational performance and flexibility. At this point, 
the algorithms have been verified in the high-level 
simulator for mathematical correctness and any applicable 
“quality” metrics. In addition, the algorithms have been 
tested in the low-level simulator to insure that they will fit 
in the hardware system chosen with regards to memory 
size, architecture, and computational performance 
limitations. Thus, the majority of risks inherent in 
hardware development should have already been addressed 
in the two system prototypes already created. 
 

For the hardware implementation phase a hardware 
description language such as VHDL is used. Vectorized 
operations that were previously converted to linear 
element-by-element operations in the hardware emulator 
are now either converted to concurrent operations here (to 
exploit the parallelisms possible in hardware), or are 
included as part of finite state machines if sequential 
operation must be maintained. If necessary, floating-point 
libraries are utilized to achieve the same mathematical 
results as produced by the prototypes. 
 

The hardware implementation phase incorporates the 
same feedback loop structure found in the feasibility study 
and hardware emulator stages. Thus, as mentioned 
previously, the highest-risk elements should be addressed 
first. For example, if the entire design depends upon the 
implementation of a high performance ALU, that element 
should be implemented in hardware first, and then examined 
and tested. If it meets its requirements, the next riskiest 
element of the implementation stage should begin, since that 
element may depend or interact with previously unknown 
attributes of the ALU. Thus, the design evolves towards a 
final solution based upon knowledge that may not have been 
available when the project was initiated. 
 

4.5 – Summary 
 One of the key advantages of this development process 
is that all algorithm research and development is done in the 
feasibility study stage through the use of high-level software 
prototypes. This is because it is significantly faster and 
cheaper to test out new ideas and build prototypes in software 
than in a low-level hardware description language.  In 
addition, the majority of client feedback is solicited and 
applied during this stage, as opposed to later on in the 
development process where changes become significantly 
more expensive and time consuming. This is in contrast to 
the traditional waterfall or spiral models where the client 
would not see a prototype (or make changes to one) until 
after at least a partial hardware implementation had been 
completed.  If the project objectives change significantly as a 
result of knowledge learned when making this prototype, 
none of the time involved in a hardware implementation will 
be lost, because that implementation is done later in the 
development process. 
 

 Like the spiral model, most of the far-reaching product 
implementation risks are examined first in the feasibility 
study stage of this model. After this stage is complete, all of 
the algorithms and processes necessary for a successful 
solution have been verified. Many of the remaining risks, 
mostly involving whether the algorithms will properly fit on 
hardware devices, are examined next in the hardware 
emulation phase. Finally, confident that the key risks have 
been surmounted, the project can continue and implement all 
of the “detail work” of hardware development confident that 
such work is not being done in vain. In addition, evolutionary 
development like that found in the spiral model is also 
incorporated into this development process through the use of 
feedback loops. These loops allow developers to attack the 
highest-risk project elements at each stage of the process 
first. Then, subsequent project elements can incorporated 
knowledge gained from the riskiest project element; 
information that was likely not known or even considered 
when the project was initiated. 
 

 Because one of the key strengths of reconfigurable 
computing is the ability of the developers to modify and 
enhance (or correct) the product once it is in the field, this 
system development model allows for ongoing maintenance. 



As new product objectives are identified, it is a 
straightforward process to simply repeat the development 
process shown in Figure 3 on a smaller scale. Because the 
original high-level and low-level prototypes are still in 
existence, they can simply be altered at each stage of the 
process to gain a full understanding of the modifications 
that need to be made to the hardware implementation. 
 
 
5. Application of Model to Wavelet Image Compression 
 

The system development process here was applied to 
develop and implement an optimized integer-based Haar 
wavelet transform, the Super-Efficient Haar Transform 
(SEHT) [9]. This optimized transform eliminates the 
separate row and column transformations inherent in 
ordinary wavelet image compression algorithms.  
 

 The development and implementation of the SEHT 
algorithm followed the system development process 
outlined previously.  The specific project flow is detailed 
in Figure 4. 
 

 
Figure 4: Image Compression Application 

First, the algorithm was conceived in the Concept 
Development stage as a method to cut the number of 
memory accesses in half by combining the row and 
column transformations. The concept was programmed in 
Matlab in the Feasibility Study phase. The Matlab 
environment is a vector and matrix-based calculation 
engine upon which a wide variety of specialized scripts 
can be run. It was specifically chosen for this project 
because of its C-like high-level programming language 
that can natively manipulate the large matrices inherent in 
image processing. This helps insure transparent code, 
which aids in rapid development and design testing. 
 

 In the Feasibility Study stage, the SEHT algorithm 
was tested to see if the relative performance improvements 
over the standard Haar wavelet transform were worth 
pursuing. The results, shown in Figure 5, indicated that 
further algorithm development was justified. 
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Figure 5: Performance Improvement from Haar to SEHT 
Wavelet Transform 
 
 

Based on the promising performance improvements in a 
high-level environment, the Hardware Emulator phase was 
initiated. Here, a high-level to low-level mapping was begun 
with the goal of reworking existing algorithms in the high-
level software implementation to more accurately simulate 
real-world hardware constraints. Vectorized operations in the 
Matlab code (utilized for speed of execution and algorithmic 
simplicity) were replaced with element-to-element linear 
operators. At locations where these operations could be 
executed concurrently, special comment blocks were placed 
in the code to preserve that information for the hardware 
implementation phase. High-level mathematical operations 
such as multiplication or division were replaced with simple 
bit shift operations. Due to the integer nature of the SEHT 
algorithm, no floating-point hardware was necessary for the 
emulator or final hardware implementation. 
 

Also in the emulator stage, multidimensional arrays in 
the high-level implementation were replaced with single-
dimensional fixed-length linearly addressable models of the 
actual memory available in the destination hardware. This is 
because many reconfigurable computing systems have fixed 
memory capacities in multiple banks, and one of the goals of 
this stage is to determine if the SEHT algorithm previously 
modeled in a high-level fashion can fit into a real-world 
system. In this example, the SLAAC development system (a 
rapid prototyping PCI board with three FPGAs and on-board 
memory) had been previously purchased for use in real-time 
applications. Thus, this hardware emulator model reflected its 
specifications.  
 

As this point in this research effort, alternate methods 
for structuring the data in memory and managing sequential 
and concurrent operations were studied.  This allowed the 
hardware implementation stage to proceed smoothly based 
upon a fully-realized design. Of all the algorithms that made 
up the image compression process, the SEHT algorithm and 
its supporting memory architecture was selected to be the 
first algorithm implanted in hardware due to its significant 
computational complexity and possibility for greater 
performance improvements. 

Better Wavelet 
Transform 

(Feasibility Study) 
Matlab Native Functions 

Matrix-Based Memory Structure 
SEHT Transform 

(Hardware Emulation) 

Matlab Building Blocks (e.g. Bit Shifts) 

Linear Memory Structure 
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VHDL 



In the final stage of the system development process, 
the Hardware Implementation, the key image compression 
algorithms were implemented in VHDL on FPGAs for 
maximum computational performance and flexibility. At 
this point, the algorithms have been verified in the high-
level simulator for mathematical correctness and any 
applicable “quality” metrics. In addition, the algorithms 
have been tested in the low-level simulator to insure that 
they will fit the SLAAC board with regards to memory 
size and architecture as well as in regards to the 
computational performance limitations of the device. Thus, 
the majority of risks inherent in hardware development 
have already been addressed in the two system prototypes 
already created. 
 

For the hardware implementation phase VHDL is 
used as the appropriate hardware description language 
because of the availability of the necessary compiler and 
supporting place and route software. Vectorized operations 
that were previously converted to linear element-by-
element operations in the hardware emulator are now 
either converted to concurrent operations here (to exploit 
the parallelisms possible in hardware), or are included as 
part of finite state machines if sequential operation must be 
maintained.  
 

The hardware implementation phase incorporates the 
same feedback loop structure found in the feasibility study 
and hardware emulator stages. Thus, as mentioned 
previously, the highest-risk elements should be addressed 
first. In this case, the overall memory structure and routing 
was implemented first.  Once it was evaluated for correctly 
storing and routing data, the next riskiest element of the 
implementation stage, the SEHT transformation algorithm 
was started, since that element may depend or interact with 
previously unknown attributes of the memory architecture. 
Thus, the design evolved towards a final solution based 
upon knowledge that may not have been available when 
the project was initiated. 
 
6. Concluding Remarks 
 

When applied to the real-world image compression 
problem, the system development process proposed here 
demonstrated several advantages. First and foremost was 
the ease of algorithm development with the high-level 
Matlab language. The transparency of the high-level code 
and the integrated debugger made it easy to optimize the 
SEHT algorithm and the supporting data systems.  
 

Such tools also proved very useful when, during 
testing at the emulator stage, the algorithm implementation 
was found to have subtle problems in the memory structure 
and re-use of certain memory elements; problems that 
were not present in the pure high-level simulation. Because 
the emulator was still in the Matlab environment, however, 
these errors were much easier to locate through the use of 
the integrated debugger. Thus, they were solved before the 

time-consuming hardware implementation stage, at which 
point such logic problems would have been effectively 
obscured by implementation details and would have been 
much more costly to locate and fix. 
 

The use of evolutionary development to build upon 
recently gained experience was of particular value in the 
hardware implementation stage. Because all the particulars of 
the implementation were not fixed early in the project, the 
developers were able to take advantage of the algorithmic 
fixes and optimizations learned in the first two stages of the 
process. Thus, when the hardware implementation was 
reached, little was left to chance, and little knowledge was 
wasted. 
 

Overall, the use of high-level rapid prototyping tools 
early in the development process can be valuable in any 
research or development program where deciding what 
system to implement is as much the goal as actually 
producing a working implementation. If the high-level 
system is properly structured and designed, then this real-
world problem showed that the prototype can be efficiently 
re-implemented in hardware through a language such as 
VHDL. 
 
7. References 
 

[1] Balster, E.J., Scarpino, F.A., and W.W. Smari, 
“Wavelet Transform for Real-Time Image 
Compression Using FPGAs,” 12th IASTED 
International Conference on Parallel and Distributed 
Computing and Systems, Las Vegas, Nevada, Nov. 6 – 
9, 2000, pp. 232-238. 

[2] Boehm, B., "A Spiral Model of Software Development 
and Enhancement", IEEE Computer, Vol.21, #5, May 
1988, pp. 61-72  

[3] Boehm, B., "Get Ready for Agile Methods, with Care", 
IEEE Computer, Vol.35, #1, January 2002, pp. 64-69 

[4] DeHon, A., “The Density Advantage of Configurable 
Computing,” IEEE Computer, Vol 33, No. 4, April 
2000, pp. 41-49 

[5] Hamlet, D. and J. Maybee, The Engineering of 
Software, Addison-Wesley, 2001 

[6] Hutchings, B.L. and B.E. Nelson, “Using General-
Purpose Programming Languages for FPGA Design,” 
37th Design Automation Conference, Los Angeles, CA, 
June 5-9, 2000, pp. 561-566 

[7] Pressman, R.S., Software Engineering, A 
Practitioner’s Approach, 4th Edition, McGraw Hill, 
1997 

[8] Swan, R. et al., “Re-configurable Computing,” ACM 
Crossroads, Issue 5.3, Spring 1999 

[9] Turri, W, “Design And Hardware Implementation Of A 
Wavelet-Based Color Image Compression System,” 
University of Dayton Masters Thesis, May 2002 

 


