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ABSTRACT

This paper introduces the Azon, an Ethernet-compatible de-
vice for creating large-scale datacenter networks. Axons are
inexpensive, practical devices that are demonstrated using
prototype hardware. Functionally, Axons replace Ethernet
switches and maintain full compatibility with existing Eth-
ernet hosts. Between themselves, however, Axons transpar-
ently use source-routed Ethernet. This unlocks many bene-
fits, such as improved network scalability, performance, and
flexibility.

In an Axon network, all state required to route a host’s
packets is placed in the local Axon—the Axon to which the
host is directly connected. Therefore, regardless of the scale
of the network, the route computation and storage needs of
a single Axon device only need to scale with the demands
of its locally-connected hosts. This is in stark contrast to
conventional switched Ethernet, which requires routing re-
sources proportional to the traffic that flows through the
device. Scalability is also increased by eliminating the use
of packet flooding for automatic location and address dis-
covery. Further, source-routed Ethernet increases network
flexibility by supporting different route selection strategies.
For example, shortest-path routing could be employed, or
longer paths selected to minimize congestion by balancing
traffic across redundant links.
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1. INTRODUCTION

Datacenters play a key role in supporting modern Inter-
net services such as search engines, e-commerce, and social
networking sites. In these datacenters, storage and comput-
ing resources are assembled on a massive scale. Commodity
technologies are used whenever possible to provide the great-
est cost efficiency. The performance and cost of the network
is especially critical. As such, there has recently been a surge
of interest in datacenter network architectures.

Ethernet is a ubiquitous technology that provides high
bandwidth at a low cost per link. However, prior work
has identified a number of shortcomings of Ethernet at the
datalink layer, particularly when large networks are de-
sired [8, 13, 14, 16, 23]. The scalability of an Ethernet net-
work is constrained by a fundamental reliance on broadcasts
and packet flooding as a location discovery mechanism. Fur-
ther, Ethernet suffers from performance bottlenecks caused
by its requirement of a loop-free forwarding topology.

Many solutions to these challenges have been proposed,
such as using IP routers to connect many smaller Ethernet
switched networks, using VLANS to overlay multiple span-
ning trees over a single physical topology [13], re-writing
Ethernet addresses to impose a hierarchy [16, 23], and pro-
viding new network services to determine network location
instead of broadcasting [8]. All of these proposed solutions,
however, are limited by a reliance on the traditional Ether-
net frame format that has been unchanged since its inception
30 years ago.

This paper explores the benefits to large-scale, local-area
datacenter networks of modifying the traditional Ethernet
frame format while keeping the underlying link layer. To
this end, we have created the Azon, an inexpensive, prac-
tical device that replaces an Ethernet switch while main-
taining full compatibility. To a directly connected host, an
Axon appears to be an Ethernet switch because the Axon
and host communicate using the standard Ethernet datalink
and physical layer protocols. Hosts can use the DHCP and
ARP protocols to obtain a network address, and locate other
hosts on the network, respectively. However, among them-
selves, Axons use source-routed Ethernet, a new datalink
layer protocol, and transparently rewrite traditional Ether-
net packets to follow this new protocol.

Source-routed Ethernet has several advantages over tradi-
tional switched Ethernet. First, it provides flexibility when
designing the physical network topology. Redundant paths
can be included and used to actively carry data, as opposed
to functioning purely as backups in traditional Ethernet us-
ing a spanning tree protocol.



Figure 1: Axon Prototype

Second, source-routed Ethernet enables flexible routing
algorithms, as packets can take any path desired. For exam-
ple, shortest-path routing could be used. Or, a congestion-
aware routing algorithm could send packets via alternate
paths that are longer but less congested. Neither approach
is supported in traditional Ethernet.

Third, source-routed Ethernet enables a flat address space
for the entire local area network. This is beneficial for
migrating services and virtual machines, because they can
maintain the same address and open network connections.
Hierarchical addressing schemes that encode location infor-
mation in the network address (such as IP) do not have the
same flexibility.

Finally, transparent source-routed Ethernet improves net-
work scalability. All network and routing state needed by
a host is stored in the local Axon—the Axon to which the
host is directly connected. Therefore, regardless of the net-
work’s scale, the route computation and storage needs of a
single Axon are proportional to the demands of its locally
connected hosts. In contrast, every Ethernet switch and IP
router must always perform a route lookup in a large hard-
ware table for every packet that traverses the device.

To evaluate the Axon architecture and demonstrate the
practicality of source-routed Ethernet, a hardware proto-
type was created that is shown in Figure 1. The prototype
Axon demonstrates both improved bandwidth and reduced
latencies of less than lus per hop. This compares favorably
to latencies of 7-28us per hop in switched Ethernet and di-
rectly impacts the performance of latency-sensitive network
applications. For example, Axon devices improve the per-
formance of PostMark, a file server benchmark, by 20-77%
for clients accessing an NF'S file server over the network.

In addition to a hardware prototype, a software Axon sim-
ulator was created. The simulator demonstrates the scalabil-
ity of an Axon network by showing that the average control
overhead per link is less than or equal to 0.25% of the to-
tal link bandwidth, even across multiple topologies with as
many as 50,000 hosts.

The remainder of this paper proceeds as follows. Section 2
describes the benefits and limitations of modern switched
Ethernet. Section 3 then introduces the Axon network ar-
chitecture, while Section 4 details the Axon hardware and
software components. Next, Section 5 evaluates the Axon

architecture using a hardware prototype and simulator. Fi-
nally, Section 6 discusses related work and Section 7 con-
cludes the paper.

2. BACKGROUND

Switched Ethernet is deployed in a variety of environ-
ments, including home, office, campus, and datacenter net-
works. A key reason for switched Ethernet’s wide-spread de-
ployment is its ease of operation. First, Ethernet equipment
will operate with little or no manual configuration. Interface
addresses are simple globally unique identifiers that are as-
signed by hardware manufacturers, and packet forwarding
is set up automatically. Second, switched Ethernet is self
healing. It can automatically take advantage of redundant
network connectivity to recover from network failures.

Switched Ethernet’s ease of operation derives in large part
from its ability to flood packets throughout the network.
Flooding enables a packet to reach the destination host’s
interface without any configuration of that interface or the
network, regardless of the interface’s location in the net-
work topology. However, since Ethernet packets do not have
a time-to-live (TTL) field, the network topology must not
have any cycles. Otherwise, flooded packets will circulate
endlessly inside network cycles. Even worse, flooded packets
will be duplicated at the intersection of two network cycles.

Switched Ethernet does permit the existence of redundant
links, but only to heal the network after a failure. Redun-
dant links are never used to provide additional bandwidth.
Ethernet switches employ a distributed algorithm, such as
the Rapid Spanning Tree Protocol (RSTP), to reach agree-
ment among the switches on a cycle-free active topology that
is a spanning tree for the network topology. The Ethernet
switches only use the active topology when forwarding pack-
ets to their destination. In effect, redundant network links
are disabled. However, in the event of a network failure,
the switches may selectively reactivate one or more disabled
links and reconfigure the active topology to use those links,
thereby healing the network. Under ideal conditions, RSTP
achieves a reconfiguration time that is on the order of the
maximum communication delay across the network.

The Ethernet packet format is very simple. The header
contains the destination address of the target host, the
source address of the originating host, and a protocol type
field, which describes the encapsulated data. The remainder
of the packet is the encapsulated data, such as a TCP/IP
packet, and a CRC for verifying the integrity of the packet.

To reduce packet flooding, Ethernet switches perform ad-
dress learning, which is the process of mapping the locations
of interface addresses within the active topology. Specifi-
cally, whenever a packet is received by a switch port p, a
mapping is created from the packet’s source address a to
the port p. Later, if a packet with a destination address a
is received on a port other than p, instead of flooding the
packet on all ports it is forwarded only to port p. Eventu-
ally, if the mapping of address a to port p is not reused, it
will be discarded.

Ethernet networks rely on broadcast protocols for key
functions.  The Dynamic Host Configuration Protocol
(DHCP) allows hosts to join a network without any man-
ual configuration, and the Address Resolution Protocol
(ARP) allows a sending IP host to discover the receiving IP
host’s Ethernet interface address (MAC address) dynami-
cally. Both protocols function by broadcasting a request to



all hosts on the Ethernet network, which can either ignore
the request or respond with a unicast message containing the
desired network configuration (for DHCP) or target MAC
address (for ARP).

3. AXON NETWORK OVERVIEW

The Axon device is a direct replacement for Ethernet
switches that can be used to create a highly-efficient local-
area network. Hosts' can be directly connected to an Axon
without modification. Axons transparently use a novel
source-routed Ethernet protocol to transfer data through a
network of Axons. In order to implement source-routed Eth-
ernet, Axons utilize a different packet format and different
routing mechanisms than conventional switched Ethernet.

3.1 Axon Packet Format

Axon packets are transmitted over conventional Ethernet
cables using standard Ethernet media access control and
physical transceivers. However, Axon packets have their
own header format, as shown in Figure 2. The Axon header
includes a type, length, and source-routing information. Al-
though Axon packets do not have an Ethernet header at
the beginning of the packet, standard Ethernet physical
transceivers (operating at the lower link layer) are still able
to send and receive them.

The type field in the header indicates the type of packet
that is encapsulated in the Axon packet. For normal traffic
between hosts, Ethernet packets are encapsulated in Axon
packets. For traffic between Axons, non-Ethernet control
messages are encapsulated in Axon packets. The type field
can also indicate other special packet types. The length field
contains the length of the Axon header.

The forward and reverse hop counts indicate the num-
ber of remaining forward hops and the number of hops the
packet has already taken. In order to ensure that subsequent
fields start on an even byte boundary, 4 bits of padding are
added after the reverse hop count that can be used for future
expansion. The forward path indicates the port numbers
that should be followed for subsequent hops and the reverse
path indicates the port numbers that should be followed
to return to the packet’s source. In the prototype design,
each hop in the path is a byte-sized value that indicates
an output port number. A hop with the value OxFF indi-
cates the packet should be forwarded to the control plane,
rather than an Ethernet output port. Production Axons
could be designed with larger numbers of ports by increasing
the width of the hop field beyond 8 bits. Further, different
encoding schemes could be employed to support variable-
length hop fields for Axons of different sizes, or to provide
extra checksumming support (beyond the standard Ether-
net CRC) to detect data corruption in transit and drop or
repair the packet as desired.

In order for commodity Ethernet MACs and PHYs to
transmit and receive Axon frames, they must support frames
larger than standard Ethernet frames and they must not re-
ject frames based on MAC address. Fortunately, modern
Ethernet MACs support jumbo frames, which, as the name
implies, are oversized Ethernet frames. With this feature
enabled on the Axon MAC units, a maximum-sized Ether-

'In this paper, the term host means any non-Axon Ethernet
device, including a standard Ethernet switch, an IP router,
or a computer.

net frame can safely be encapsulated within an Axon packet.
Further, Ethernet MACs support promiscuous mode, which
disables checking of the destination MAC address, thereby
allowing the first 6 bytes to be used by the Axon header.

From the perspective of the Ethernet MACs and PHYsS,
an Axon packet is an oversized Ethernet frame. As such, the
Ethernet CRC can be used to detect transmission errors. As
with conventional Ethernet frames, the transmitting MAC
will compute and append a CRC to every Axon packet and
the receiving MAC will compute and verify the CRC of every
Axon packet.

A disadvantage of source-routing is that it reduces the ef-
fective bandwidth available at the physical layer. In effect,
application layer data is displaced by the source-route. This
overhead was analytically calculated for source-routes con-
taining 1, 10, and 100 hops. The overhead of source-routing
is negligible for short routes with 1-10 hops. For longer
100 hop routes, the maximum bandwidth available to the
application only decreases by 3% at the largest packet size.

3.2 Axon Packet Routing

An Axon can determine the output port for an Axon
packet after receiving the seventh byte, which contains the
next forward hop in the source-route. At this point, the
paths in the Axon header can be updated for the subse-
quent hop at the same time that the packet is forwarded to
the appropriate output port.

Axons perform cut-through routing at the packet level.
This is necessary due to the use of Ethernet as the link
layer. Ethernet MACs and PHYSs only allow entire Ethernet
packets to be transmitted over a wire. No backpressure can
be applied for flow control in the middle of a packet trans-
mission. This means that buffering for entire packets must
be provided in order to deal with collisions and congestion.
Unlike other interconnection networks, Ethernet networks
do not guarantee packet delivery. Higher level network pro-
tocols are used to throttle the transmission rate and retrans-
mit. Thus, when buffers are full, the Axon can safely drop
packets. However, flow control can be applied at the packet
level to reduce/eliminate packet loss.

3.3 Compatibility

Axons present themselves as a conventional Ethernet
switch to conventional Ethernet devices. Hosts that are
connected to an Axon send and receive normal Ethernet
frames, not Axon packets. In order to present this interface,
all packets that are transferred between an Axon and a con-
ventional Ethernet device must be converted between Axon
packets and Ethernet frames.

Axons use a bootstrap protocol to determine whether each
port is connected to another Axon or to a traditional Eth-
ernet device. When connected to another Axon, packets are
simply forwarded as described in Section 3.2. Otherwise,
packets received from an Ethernet device are encapsulated
in an Axon header and packets sent to an Ethernet device
are stripped of their Axon packet header.

Locally connected hosts will broadcast DHCP and ARP
requests and expect replies from the appropriate hosts. The
local Axon intercepts these address and location discovery
messages and responds after coordination with a network
controller described later. Once the host has been configured
with an IP address, it will use ARP to find other hosts. The
local Axon is responsible for collaborating with the Axon
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Figure 2: Axon Packet Format

connected to the target host in order to set up routes to
allow communication in both directions between the hosts.

A content addressable memory (CAM) is provided in ev-
ery Axon to store a mapping between MAC address and
source-route. This CAM can be similar in design to those
used in conventional Ethernet switches. A larger, more com-
plicated ternary CAM as used in IP routers to do partial
address matches is not necessary. When a host sends an
Ethernet packet to a target MAC address, the Axon will
transparently use the target MAC address to lookup the ap-
propriate source-route in its local route memory. The Axon
will then encapsulate the Ethernet packet inside of an Axon
packet using that source-route, and transmit it to the next
Axon along the route.

When the next forward hop of an Axon packet indicates a
port which is connected to a host, the Axon header will be
stripped from the packet, leaving a normal Ethernet packet.
The packet is then forwarded to the host, which will never
know that the packet had previously been encapsulated in
an Axon packet.

Axons can be incrementally deployed into an existing Eth-
ernet network. An Axon that is connected to a switch sim-
ply behaves as if it were connected to a host. Because the
Axon prototype maintains routes on a per-port basis, all
hosts connected to the switch (which is attached to a single
Axon port) use the same set of routes, retrieved by target
MAC address. A production Axon could extend this design
for security or performance reasons, however, and retrieve
source-routes based on a target/source MAC address tuple.
This way, each host hidden behind a switch could still have
its own route to a given target.

3.4 Axon Network Controller

The route selection problem for arbitrary network topolo-
gies has been solved using techniques such as a distributed
hash table [8, 20] or a central controller with full topology
knowledge [4, 25]. While a distributed hash table is more
scalable and resilient to failure, a central controller can have
a simpler design. Further, previous work has shown that
the controller can both scale to support tens of thousands of
hosts and be replicated across multiple controllers to elimi-
nate a single point of failure for the network.

The prototype Axon network uses a central controller be-
cause of its simplicity and the extra flexibility it allows in
route selection, but this is not fundamental to an Axon net-
work. The controller must be able to learn the network
topology, and this is accomplished through a discovery pro-
tocol described in Section 4.2.1.

4. AXON DEVICE ARCHITECTURE

Each Axon device includes both a hardware switching
fabric—the data plane—and a processing element to perform
control operations for locally connected hosts—the control
plane. The data plane is implemented in hardware for per-
formance and the control plane is implemented in software
for flexibility. While IP routers bear some similarity to this
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Figure 3: Axon Ethernet Port in Data Plane

high-level architecture, the Axon device is much simpler,
and therefore can be faster and more cost effective. This
section provides an overview of the data and control plane
architecture.

4.1 Axon Data Plane

The Axon hardware data plane contains input ports and
output ports (1 per physical Ethernet port) that are inter-
connected by switch capable of cut-through packet forward-
ing. A subset of the full Axon design (showing a single
Ethernet port) is shown in Figure 3. Of these components,
only the input port provides new functionality compared to
traditional designs, and is described in more detail here.

The control plane configures each Ethernet port as an
Azon-port or a host-port. A host-port is connected to a con-
ventional Ethernet device, so all packets crossing its Ether-
net link are standard Ethernet frames. In contrast, an Axon-
port is connected to another Axon, so all packets crossing
its Ethernet link are Axon packets.

4.1.1 Input Port

When a packet is received over an Ethernet link, it is first
processed by the corresponding input port. As Figure 3
shows, packets received on a host port are processed by the
route lookup module and then the header processing mod-
ule. Packets received on an Axon-port are only processed
by the header processing module.

Route Lookup.

Host connected to an Axon always send Ethernet frames.
These frames cannot be routed through the Axon network
until they are first encapsulated in an Axon packet. The
route lookup module searches a CAM using the destination
MAC address of the received packet. If a match is found,
an index is returned to a specific route stored in that port’s
route memory.



Each Ethernet port has its own associated route memory
that is only used by host-ports. This route memory contains
Axon headers with source-routes that have been configured
by the control plane in response to ARP requests made by
the host. By providing this memory on a per-Ethernet-port
basis, network security policies can be supported that pro-
vide isolation between hosts.

The route lookup module uses the destination MAC ad-
dress of the received packet to retrieve an Axon header from
the route memory. If the MAC address matches an existing
route, then the retrieved header is prepended to the Eth-
ernet frame, creating an Axon packet. If the destination
MAC address does not match an existing route, then a de-
fault Axon header is prepended to the frame with a single
forward hop that targets the local software control plane. A
lookup failure which causes a packet to be forwarded to the
control plane is not necessarily an error, as broadcast traffic
is sent to the control plane by this same mechanism.

Once an Ethernet frame has been processed by the route
lookup module, it has become a valid Axon packet like any
other Axon packet and can be processed by the header pro-
cessing module. Note that regardless of the length of the
route a packet must traverse, this initial route lookup on a
host’s local Axon is the only time any route lookup will be
performed. For all subsequent hops, the packet will arrive
at an Axon-port and skip the route lookup module.

Header Processing.

Packets arriving on an Axon-port or packets that have
been transformed by the route lookup module are next pro-
cessed by the header processing module. The header pro-
cessing module first reads the next forward hop to determine
the correct output port to which the packet should be for-
warded. If there are no remaining forward hops, the packet
type is changed to an error packet and it is forwarded to the
control plane.

If the output port is an Axon-port, the header is then
modified for the next hop through the network. First, the
forward hop count is decremented and the reverse hop count
is incremented. Second, the first forward hop is removed
from the header, and subsequent hops are shifted forward.
Finally, the input port number is inserted as the first reverse
hop. These modifications to the header can be made as it is
sent to the output port over the switch.

If the output port is a host-port, the Axon header is com-
pletely removed from the packet, leaving a valid Ethernet
packet. However, if the packet type is not encapsulated
Ethernet, then the packet type is changed to an error packet
and it is forwarded to the control plane. Otherwise, the bare
Ethernet frame can be immediately sent over the switch to
the appropriate output port.

4.2 Axon Control Plane

The primary responsibility of the Axon control plane is
to setup routes for the data plane. The control plane will
intercept and process Ethernet broadcast packets transmit-
ted by local hosts, such as DHCP and ARP. For flexibility,
the control plane is implemented in software running on a
low-power embedded processor. The control plane has a
port into the switching fabric of the data plane. This allows
the control plane to receive packets from and inject pack-
ets into the data plane seamlessly. The data plane forwards
all Ethernet packets from a host with a destination address

that cannot be matched to a valid source-route, including
all broadcast traffic.

4.2.1 Discovery

In order to install routes, each Axon needs to find the
controller and the controller needs to learn the network
topology. This is accomplished through the fully automated
Azon-Discovery protocol, which requires no manual inter-
vention. Three different types of packets are used: Azon
Hello, Heartbeat, and Controller Hello.

Both Axons and the controller periodically send Axon
Hello requests out of all uninitialized ports. Axon Hellos
contain the unique ID for the Axon and are encrypted with
a pre-shared key. If an Axon authenticates the request, it
sends back a reply, which completes the handshake.

After two Axons or an Axon and the controller exchange
Hellos, they periodically send Heartbeat messages to each
other to monitor link state and find the controller. Heart-
beat messages contain the sender’s shortest verified path to
the controller. If a Heartbeat is not received by an Axon af-
ter twice the send interval, the link is assumed to be down,
and the port is set to an uninitialized state.

Controller Hellos are sent by Axons any time a port
changes state or a Heartbeat with a shorter path is received.
These messages contain the full port state information for
the sending Axon. To ensure that the controller receives the
new topology information, Controller Hellos are sent out pe-
riodically until a valid reply is received from the controller.

4.2.2 ARP

Hosts use the ARP protocol to determine the location of
other hosts on the Ethernet network. As with all broadcast
Ethernet traffic, ARP requests are forwarded to the control
plane. The control plane then uses the Azon-ARP protocol
to satisfy the request. The Axon-ARP protocol involves the
controller and two Axons: the source Axon, which is con-
nected to the source host making the request, and the target
Axon, which is connected to the host that is the target of
the request. The source and target Axons must commu-
nicate with the controller in order to setup routes in both
directions between the source and target hosts. When routes
become invalid due to failure, the Axon local to the failure
notifies the controller, which reroutes all affected flows.

Upon receiving an ARP request, the source Axon first
reserves a CAM entry and space in the input port route
memory corresponding to the source host. This space will
be used to hold an Axon header containing a route from
the source host to the target host. However, the source
Axon does not yet have an Axon header for the flow nor the
target Ethernet addresses to place in the CAM, so it cannot
yet update the route memory and mark it valid for use. To
obtain the missing information, the source Axon sends an
Azon-ARP request to the controller. This request includes
the original ARP request and the Axon port to which the
source host is connected.

When the controller receives the Axon-ARP request, it
computes a path from the source Axon to the target host,
the target Axon to the source host, and a path from the
controller to the target Axon. In order to find these paths,
the controller must know the topology of the network, which
is the job of the Axon-Discovery protocol, and the mapping
of hosts to Axons, which the controller learns from previous
ARP and DHCP requests. Hosts with static IPs that do



not send DHCP requests are required to send a gratuitous
ARP to initialize, as is commonly done when migrating vir-
tual machines to a different port on a conventional switched
Ethernet network. If any of the route computations fail, the
request is dropped or the source host’s port is blocked if
the controller decides the source host is misbehaving. If the
path computation succeeds, the controller sends the Axon-
ARP request to the target Axon with the routes between
the Axons attached.

When the target Axon receives an Axon-ARP request, it
also reserves a CAM entry and space in the input port route
memory corresponding to the target host. This memory will
hold an Axon header containing the route back from the
target host to the source host. The target Axon then sends
the ARP request in the Axon-ARP request to the target
host. When the target host sends back an ARP reply, the
data plane will forward it to the control plane, since the
reserved route memory is not yet valid.

When the target Axon receives the ARP reply from the
target host, it can then install a route to the source host.
The Axon header will include the route back to the source
host, which is included in the Axon-ARP request, and a
CAM entry will be installed. After installing a valid route,
the target Axon can respond to the control plane of the
source Axon with an Azon-ARP reply.

When the source Axon receives the Axon-ARP reply, it
can complete the route setup for the source. It uses the
MAC addresses in the reply to place the Axon header in the
previously allocated source host’s route memory. Finally,
the source Axon can respond to the source host with a nor-
mal ARP reply. The input ports will find a valid route in
each direction and will therefore forward the packet along
the appropriate path with no further intervention from the
control plane.

The route from the target to the source is valid before
the route from the source to the target is valid. In the
unlikely event that the target sends a packet to the source
during that time period, it will arrive correctly at the source.
(This is unlikely, however, as it is the source host that is
initiating communication.) If the source host then responds
before the source Axon has validated the route, the hardware
will simply forward that packet to the control plane. The
control plane can either queue the packet until the route
is available, or simply drop it, as this should affect only a
small number of packets, and higher level network protocols
should retransmit if needed.

The Axon-ARP protocol is only necessary for new ARP
requests. When an ARP request arrives at an Axon for an
existing flow, the Axon can send a cached copy of the ARP
reply directly to the source host. To avoid stale flows, each
Axon sends a periodic gratuitous ARP to every host con-
nected to it. If an Axon does not receive a timely ARP
reply, it destroys all flows for the host and notifies the con-
troller. The controller is responsible for notifying all of the
target Axons involved in prior communication with this host,
so that they can also delete the now-invalid routes in their
local route memories.

4.2.3 DHCP

DHCP enables a host to dynamically discover its IP ad-
dress. Axons intercept DHCP messages to provide trans-
parent compatibility with existing hosts. Here, the initial
DHCP discovery message is broadcast by the host. As with

all Ethernet broadcast traffic, DHCP discovery messages will
be forwarded to the Axon control plane. The control plane
forwards the DHCP traffic to the controller, which updates
the topology information and acts as a conventional DHCP
server. All communication between the host and the DHCP
server is guaranteed to be forwarded to the control plane.
The broadcast DHCP discovery and request messages from
the host will always be sent to the control plane. The con-
troller will use a source Ethernet address that will never
correspond to a valid source-route in the DHCP offer and
acknowledgement messages it returns to the host. When
the host subsequently tries to renew its lease with a unicast
message, it will use that Ethernet MAC address. The data
plane will then forward the message to the control plane, as
the address does not correspond to a valid source-route.

S. EVALUATION

To evaluate the Axon design and the benefits of source-
routed Ethernet, a variety of experiments were conducted
using both a hardware prototype and a custom simulator.

Figure 1 shows the prototype Axon device used for eval-
uation. In the prototype, the hardware data plane is im-
plemented on Stanford’s NetFPGA platform [11] and the
software control plane runs on an Intel Atom processor in
a D945GCLF mini-ITX motherboard. Communication be-
tween the data and control planes takes place over the PCI
bus in the prototype.

The NetFPGA platform is a 32-bit/33MHz PCI card that
includes 4 Gigabit Ethernet ports, a Virtex-1I Pro 50 FPGA
connected to those ports, several memories, and other essen-
tial components (Ethernet PHY, PCI interface, etc.). The
data plane is entirely implemented with the Virtex-II Pro
FPGA on the prototype. While a production Axon imple-
mentation would have more Ethernet ports, the NetFPGA
effectively limits the prototype to 4, which is still sufficient
to demonstrate the viability of the Axon device.

The control plane is implemented as a user-level applica-
tion running on a standard x86 Linux kernel. The band-
width between the control and data planes is limited by the
32-bit PCI bus in the prototype. In practice, there is more
than enough bandwidth for the address and location discov-
ery tasks currently performed by the control plane.

Creating an experimental prototype yielded several ben-
efits. First, it provided a strong understanding of the low
hardware complexity of source-routed Ethernet. The Axon
was implemented on an old FPGA family with limited logic
resources, and was still able to operate at full gigabit wire
speeds. Second, a prototype allowed hardware performance
metrics such as forwarding latency to be experimentally
measured, instead of estimated. Third, a prototype al-
lowed the design to be validated, particularly with regards
to compatibility. With the prototype, full compatibility was
demonstrated with a variety of unmodified hardware and
software platforms, including computers running Windows,
Mac OS X, FreeBSD, and Linux, as well as a Cisco IP router.
The hosts were able to communicate at full wire speed over
the Axon network with transparent source-routing.

In addition to the Axon prototype, an Axon simulator
was also implemented. It contains three main components:
the Axon control plane software, a switchboard process, and
the host software. The control plane software is identical to
the software used on the prototype Axon but interfaces with
the switchboard process instead of the physical device. One



instance of the control plane is created for each simulated
Axon, but only one switchboard is created. The switch-
board simulates all of the links and Axon hardware in the
network and is responsible for forwarding Axon packets by
their source routes, attaching headers to host packets, and
keeping statistics. The host software can either be a vir-
tual machine or an ARP generator. Arbitrary traffic can be
forwarded through the simulator between virtual machines,
while the ARP generator is used as a lower overhead means
to simulate host discovery. Control plane software for Port-
Land [16] was also implemented in the Axon simulator to
provide a reference.

The simulated network topology is read from a static
configuration file. Five different topologies were simulated:
torus, fat tree, flattened butterfly (FBFLY) [10], random-
low, and random-high. Torus is dimensioned by the ring
size and the number of rings. In torus, each Axon is con-
nected to exactly four other Axons, two in each dimension.
Fat tree and FBFLY are built as described in [16] and [10],
respectively, and support non-blocking communication. The
random topologies are generated by visiting each Axon and
creating n links from the visited Axon to other random Ax-
ons, for an average degree of 2n. Random-low uses an aver-
age degree of 4 to match the torus topology and random-high
uses a degree to match the FBLY topology for a given size
network. Each Axon in torus and random-low are connected
to 10 hosts. The topologies use as few Axons as required for
the simulated number of hosts, and the hosts are evenly dis-
tributed across the Axons.

The ARP generator uses two different ARP patterns. The
first ARP pattern is derived from packet traces collected
from the Lawrence Berkeley National Lab (LBNL) [17], after
scanning traffic has been filtered out. The scanning traffic
was omitted because the Axon controller has a global view
of ARPs and could detect and disable ports engaged in scan-
ning. Further, the scanning traffic in the trace is anonymized
separately from other traffic, so a host engaged in scanning
appears in the traces as two separate hosts. The LBNL
traces cover at most 17,000 hosts, so simulations with more
hosts use a random ARP pattern. Each host sends a set
number of ARPs to random hosts. For each LBNL topol-
ogy, 5 different random mappings of hosts to Axons were
simulated and the results were averaged across the runs.

The simulator has no knowledge of time, but it can be
used to derive bandwidth results by normalizing total byte
overhead to seconds. For example, if the total byte overhead
of each host sending 5 ARPs is known from the simulator,
then it is trivial to calculate the total byte overhead per sec-
ond of each host sending 5 ARPs per second. The control
traffic bandwidth is obtained from the simulator by normal-
izing the ARP overhead to a constant rate and configuring
the Axons to send a set number of Heartbeats after the net-
work has been allowed to initialize.

Creating a simulator provided several benefits. It allowed
networks to be evaluated with a large number of hosts and
Axons in order to determine scalability. This was not possi-
ble using real Axons, because only a limited number of pro-
totype devices and network hosts were available. Further, it
allowed a variety of network topologies to be evaluated.

In this section, several facets of the Axon architecture
are evaluated, including its ability to increase bandwidth
due to redundant routes and the lower latency provided by
source-routed Ethernet. Further, the necessary size for an

UDP TCP
Line | Ring [ Line | Ring
Flow 1 481 952 566 752
Flow 2 | 483 952 598 792
Flow 3 | 476 930 243 815
Flow 4 481 952 244 524
Flow 5 | 476 952 397 493
Flow 6 | 509 952 377 575
Aggregate | 2906 | 5690 | 2425 | 3951

Flow

Table 1: Individual and Aggregate Bandwidth for
Line and Ring Topologies, Measured in Mb/s

Axon route memory is quantified. Finally, the scalability
of the Axon control architecture is evaluated, along with
the flexibility of the Axon substrate to accommodate new
routing algorithms.

5.1 Higher Bandwidth

One major advantage of source-routed Ethernet over con-
ventional Ethernet using a spanning tree protocol is that
source-routing allows for arbitrary topologies that include
cycles. The addition of these redundant links can signifi-
cantly increase available bandwidth. To demonstrate this,
three prototype Axons were assembled in line and ring
topologies. The line topology represents the simplest Eth-
ernet network that is restricted by a spanning tree, and the
ring topology is the simplest network with a cycle and shows
how the Axon design can exploit the increased bandwidth.
In both configurations, two hosts were connected to each
Axon, for a total of 6 hosts per network. Each host trans-
mits a single flow to another host attached to a different
Axon. All 6 flows are equally dispersed across the network.

Table 1 shows the bandwidths of the six flows between
hosts for each topology for the UDP and TCP protocols.
These application-level bandwidths were measured using the
netperf microbenchmark. In the line topology, there is net-
work contention over the links connecting the three Axons
because each of the six hosts produces a 1 Gb/s flow, but
there are only 4Gb/s of cross-Axon bandwidth available
in the network (accounting for the bidirectional rate). In
the ring topology, the achieved bandwidth improves signif-
icantly. Again, each flow attempts to utilize about 1Gb/s
of bandwidth, but this time the network can provide 6Gb/s
due to the extra link.

All individual flows see a marked improvement when using
the ring topology over the line topology. The ring topology
gives a 96% improvement in UDP’s aggregate bandwidth
and a 63% improvement in TCP’s bandwidth over the line
topology. The improvement in UDP bandwidth is more pro-
nounced because there is traffic in exactly one direction per
flow. TCP requires acknowledgement packets to be sent in
the reverse path for a given flow, causing occasional packet
loss and subsequent TCP bandwidth throttling. As shown
here, a network can significantly benefit from using the re-
dundant links that would otherwise be disabled by the span-
ning tree protocol.

5.2 Lower Latency

In addition to increasing available bandwidth, the Axon
design also achieves lower forwarding latency than tradi-
tional Ethernet switches for two key reasons. First, the Axon
design incorporates cut-through forwarding. Although Eth-
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ernet switches could also employ this technique, most imple-
ment a store-and-forward design. Second, source-routing in-
curs fewer time-consuming routing lookups than traditional
switched Ethernet, as only the first Axon along the path
needs to retrieve and append the route header. Subsequent
Axons simply read the output port directly from the packet
header as it is received from the network link.

Forwarding latency for the Axon prototype was measured
directly from the gate-level design. Each Axon adds 520ns
of latency to transit a packet from an Axon-port to an Axon-
port, or 720ns from a host-port to an Axon-port (due to the
header lookup and packet rewriting). This latency on the
prototype can be considered an upper bound. Production
devices would be faster for 3 reasons: the prototype uses
an older Virtex-II Pro FPGA, prototype CAM and FIFO
structures are implemented in (slower) FPGA logic, and the
prototype includes an Ethernet media access controller that
adds 224ns of latency but provides no useful functionality
for the Axon design. For comparison, a store-and-forward
gigabit Ethernet switch typically adds latency of 7-28us per
hop, depending on packet size. (Emerging 10Gbps Ethernet
switches have latencies measured in hundreds of nanosec-
onds, but these devices cannot be fairly compared against
the Axon prototype, which was restricted to a 1Gbps line
speed and FPGA technology dating from 2004.)

The latency benefits of the Axon translate into perfor-
mance improvements for latency-sensitive applications such
as the PostMark file system benchmark. PostMark approx-
imates a large Internet e-mail server that maintains a large
pool of continually changing small files [7]. Figure 4 shows
the performance of PostMark when a client accesses an NF'S
server via a network of Axons or Ethernet switches. The
NF'S file server was configured to use a RAM disk to elim-
inate disk latency, and PostMark was used as a client to
perform read and write accesses on a random set of files
of different sizes. The graph shows that Axons outperform
Ethernet switches for 1-5 devices (as limited by the number
of available prototype Axons), but the trend is clear as the
number of network hops increases.

The latency of an Ethernet switch, with its store-and-
forward design, clearly degrades the file system performance
as the number of switches increases. When using an Axon
network, however, the additional cut-through latency added
by each Axon is minimal, and thus the file system perfor-
mance remains nearly constant as the network size increases.
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Thus, the performance penalty of using centralized network
storage is significantly reduced with an Axon network.

5.3 Route Memory

To determine the size of the per-port CAM needed for
an Axon, a variety of gigabit router traces from NLANR
were evaluated for two different configurations: traffic en-
tering/exiting the network, and traffic internal to the net-
work. CESCA-I is a 3-hour trace that covers a gigabit link
between an Internet-facing router and the scientific ring in
FEurope. NCAR-I is a 1-hour gigabit trace covering traffic
seen from the Internet to a router in the National Center for
Atmospheric Research. LBNL is a trace from two routers
that interconnect 22 subnets at Lawrence Berkeley National
Labs, and is the closest approximation to a single large dat-
acenter network.

Each trace was analyzed to find the re-use distance (in
packets) between messages to the same destination IP ad-
dress. The distance corresponds to the number of entries in
an Axon’s CAM that would be needed to support all active
flows during the trace. The effectiveness (e.g., hit rate) of
the CAM at a range of sizes is shown in Figure 5. Here, a
CAM of 4000 entries is sufficient for CESCA trace, which is
analogous to an Axon at the network edge that is exposed
to all flows entering and exiting the network. Smaller CAMs
are sufficient for other traces that monitor internal network
traffic. For comparison, even low-end managed Ethernet
switches used in datacenters typically contain CAMs with
8k or more entries. Further, in an Axon network, the CAM
size is only relevant for Axons directly attached to hosts.
Axons in the network core do not need to perform route
lookups, a stark contrast to a traditional switched Ethernet
network, where core switches need forwarding entries for ev-
ery network host whose packets transit that network hop.

5.4 Lower Control Overhead

The control overhead of a network is one factor limiting
scalability. To determine the control overhead on an Axon
network, the simulator was used to evaluate the torus, fat
tree, FBFLY, random-low, and random-high topologies on
networks with up to 50,000 hosts and 5,000 Axons. The
control overhead on an Axon network is incurred from the
Axon-ARP protocol and the Axon-Discovery protocol. This
is in contrast to a switched Ethernet network, where the
control overhead is dominated by ARP traffic.
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The overhead of network discovery by the central con-
troller during initialization is minimal. On the largest topol-
ogy with 5,000 Axons and 10,000 links between Axons, the
average link carried 40Kbit of traffic and the worse-case link
(attached to the central controller) carried 108Mbit of traf-
fic. The overhead until convergence on a PortLand network
is also minimal, but is between 50-100% larger than on an
Axon network.

The overhead of an Axon network during normal network
operation is presented in Figure 6(a) for a torus configura-
tion. This figure shows the control overheads in Mbps for

both Axon and Ethernet networks as the number of attached
hosts (and thus the network size) increases.

The simulator is configured to provide a constant rate of
10 new ARP requests per host per second and a Heartbeat
rate of 10 per second. The ARP rate was chosen based on
data provided in [4], which observed a peak new ARP per
host per second rate of 0.5 on a 22,000 host enterprise net-
work. A datacenter network might have a higher ARP rate,
so an average rate of 10 ARPs per second was chosen. This
is a conservative choice, especially considering that it only
represents ARPs caused by new communication flows that
require a new route generated by the controller. In con-
trast, a traditional Ethernet network also experiences extra
broadcast ARP traffic caused by timeouts of old entries in
the ARP cache. In an Axon network, however, such ARPs
are intercepted by the local Axon and answered using cached
data. Thus, the rate of 10 ARPs per second represents only
completely new communication flows in the network, not the
maintenance of existing flows.

In Figure 6(a), Avg Azon Heartbeat represents the topol-
ogy discovery messages periodically sent by Axons to the
central controller, and Avg Azon ARP represents the com-
munication between Axon and controller to generate a new
route. Avg Azon Owverhead is simply the sum of these two
components, and represents the average overhead incurred
by any link in the network. Max overhead represents the
same sum of heartbeat and ARP overhead, but instead of
an average across all links, it shows only the most congested
link in the network, which is attached to the controller. Fi-
nally, Ethernet overhead is also provided for comparison.
Because ARPs are broadcast in traditional Ethernet, the
total ARP traffic from all the hosts is a lower bound on the
overhead of each link.

The controller receives and sends a packet for every ARP
request, and each packet includes route information. Thus,
it is expected that the maximum link overhead on an Axon
network would be more than twice that of an Ethernet net-
work, and this is confirmed by the results. However, because
ARPs are not broadcast, the average Axon link experiences
a much lighter load than the average Ethernet link.

At the same rate, the overhead of ARP traffic is greater
than that of discovery traffic on every topology other than
torus. The Heartbeat overhead grows linearly with the num-
ber of links and average distance from the controller, which
were both large on torus. The ARP overhead is typically
greater because each Heartbeat traverses only one link, but
each Axon-ARP has to reach the central controller, which is
on average a longer distance.

A comparison of overheads on different topologies with the
LBNL ARP traces is presented in Figure 6(b). Torus has the
highest average distance from the controller, and thus has
the highest average ARP and Heartbeat overheads because
the packets are larger to accommodate a longer source-route.
Random-low has a shorter average distance to the controller,
and this is reflected in the overheads.

A comparison of the total overheads of both an Axon net-
work and a PortLand network on the same topologies is
presented in Figure 6(c). In PortLand, the controller broad-
casts ARPs that it cannot resolve, unlike an Axon network.
PortLand (Cold) represents simulations where the none of
the hosts are initialized, whereas PortLand (Warm), repre-
sents a system where all of the hosts are initialized before any
ARPs are sent. The Portland (Warm) overheads are slightly



Topolo Torus Random
POlOBY [5p [ SPAIN | SP | SPAIN

Flows Per Host 5 5 5 5
Avg Route Length | 28.469 28.677 | 6.366 6.43
Avg Flows/Link | 1511 1524 324 330

Std Dev Flows/Link 1310 1216 112 45
Max Flows/Link 4300 2836 1026 494
Avg Mb/Link Failure 938 948 145 148
Max Mb/Link Failure | 2670 1765 460 222

Table 2: Flow Distribution for Shortest Path (SP)
and SPAIN Routing

lower than the Axon overheads because the Axon packets in-
clude source-routes, but the average Portland (Cold) over-
head is over an order of magnitude larger than the average
Axon overhead, showing the overhead and scalability bene-
fits of never broadcasting packets.

5.5 Flexible Route Selection

In the previous results, the controller calculated routes
using a shortest-path algorithm. However, source-routed
Ethernet is flexible and can accommodate routes generated
by other algorithms. As an example, the controller was
modified to imitate the proposed SPAIN network architec-
ture [13]. Here, a greedy weighted shortest path algorithm
is used to calculate routes. The weight of a link is the num-
ber of flows on the link multiplied by a large number, which
will distribute the flows more evenly across the links, even
at the expense of taking a slightly longer path. A compari-
son of SPAIN-style routing versus shortest path uniform link
weight routing demonstrates the effectiveness of the Axon as
a substrate for intelligent and arbitrary route selection with
no modifications to the network hardware.

The controller is not limited to SPAIN-style routing.
SPAIN is used as an example, but the controller can ar-
bitrarily choose routes and could also implement either of
the flow scheduling algorithms presented in Hedera [1].

Table 2 shows that the benefits of improved route distri-
bution with SPAIN-style routing for torus and random-low
with 10,000 hosts. Although the average number of flows
per link only changed slightly with SPAIN, the network-
wide balance improved significantly, as evidenced by the
standard deviation of the number of flows per link. This
was most prominent on random-low, as shortest-path rout-
ing was already reasonably effective on a torus network due
to its uniform structure.

The overhead per link failure in Table 2 is obtained di-
rectly from the number of flows per link. In the case of
link failure, one packet must be sent from the controller to
the source Axon for every flow that traverses the failed link.
A routing algorithm like SPAIN that balances flows across
all network links reduces the number of links that must be
re-routed if any one link fails.

6. RELATED WORK

It is well known that switched Ethernet does not scale well
to large numbers of hosts [14]. In fact, the very mechanisms
that make switched Ethernet easy to manage also hinder its
scalability. As the network size increases, dynamic address
and location discovery using broadcast packets and packet
flooding become prohibitively expensive for both switches

and hosts connected to the network.

As a consequence of switched Ethernet’s limitations, the
current practice is to break the network into subnets and use
IP routing between the subnets. Each subnet can then be
its own independent Ethernet network. In effect, IP routers,
which originally existed at the edge of the campus or dat-
acenter network, now form the core. However, this creates
additional management overhead. Furthermore, the route
computation and storage needs of a network device in this
architecture scale with the amount and type of traffic that
traverses the device.

Others have proposed architectural modifications to Eth-
ernet switches to enable large-scale networks [6, 8, 9, 13, 14,
18, 19, 20, 21, 22, 23, 24]. Techniques used include overlay-
ing multiple spanning trees to exploit redundant links, us-
ing a distributed hash table, and rewriting MAC addresses
to impose a hierarchy on the address space. In general,
these approaches move the responsibility for routing among
hosts from the IP routers to the Ethernet switches. This
requires the switches to maintain routing tables and other
network state for all traffic flows that traverse the switch.
This effectively replaces lightweight Ethernet switches with
heavyweight “Ethernet routers”. While these techniques do
reduce the management overhead of IP routing and subnet-
ting, they do not consider the practicality, complexity, and
cost of the required network devices.

In contrast to these previous approaches, source-routed
Ethernet moves the burden of route determination to the
source of the traffic. An Axon only need know about routes
to destinations with which its locally connected hosts are
communicating. An Axon does not need to have any routing
or topology information for traffic that it is forwarding.

Identity-based routing can also be used to improve the
scalability of local area networks [2, 3, 5]. These prior tech-
niques, however, do not route directly to the destination.
Instead, they determine paths using a hash of the desti-
nation identifier. The Axon network is not constrained to
use any particular path for a traffic low. When necessary,
shortest-path routing can be used. In other instances, dif-
ferent routes could be chosen; in order to take advantage of
redundant links, for instance.

Others have recognized that there are many redundant
links that Ethernet switches never use. Many have pro-
posed new ways to manipulate the spanning tree [18, 24, 13].
Axons, in contrast, exploit redundant links by eliminating
broadcast and using source-routing. For example, source-
routes can trivially be created for different traffic flows across
the redundant links.

OpenFlow switches can be programmed to identify flows,
process packets, and forward packets in a flexible man-
ner [12]. While OpenFlow switches allow modifications to
the Ethernet protocol, they are still closely tied to the ex-
isting switched Ethernet architecture. This means that flow
data must be disseminated to all OpenFlow switches in order
to forward packets correctly. In an Axon network, however,
network state for a host’s traffic flows is only needed at the
local Axon, and not at all Axons in the network.

Myricom’s 10Gbps network devices, like Axons, also use
commodity ethernet physical interfaces [15]. This means
that Myri-10G adaptors and switches can interoperate with
conventional 10Gbps Ethernet adaptors and switches. How-
ever, to enable this functionality, the switches must be
equipped with special network processors to convert Eth-



ernet packets into Myricom packets. Furthermore, Myrinet
networks also use source-routing for performance. However,
the source-routing is controlled by the Myri-10G adaptors,
not the Myri-10G switches. Therefore, in contrast to the
Axon device, which allows commodity systems to obtain
higher network performance, Myri-10G switches only pro-
vide improved network performance when the host systems
also use Myri-10G adaptors. The Axon architecture will
therefore be able to provide better network performance for
commodity host systems.

Of all the related work, the Axon is evaluated on the
largest topology, with a total of 50,000 hosts and 5,000 Ax-
ons. The next largest simulation is done in SPAIN [23],
which simulates a network with 27,000 hosts and 2,880
switches. Evaluation on such a large topology effectively
demonstrates that an Axon network is at least as scalable
as alternate networking schemes.

7. CONCLUSION

The Axon is an inexpensive, practical device that replaces
an Ethernet switch. Axons are compatible with existing
Ethernet hosts, allowing them to benefit from the perfor-
mance advantages of source-routing while maintaining the
plug-and-play simplicity of traditional Ethernet. By employ-
ing source-routed Ethernet, a new datalink layer protocol,
Axon networks provide greater scalability than conventional
switched Ethernet networks by pushing state to the edge of
the network and eliminating broadcast messages. The con-
trol overhead on an Axon network with 50,000 hosts is only
0.25% of the total link bandwidth. By increasing Ethernet’s
scalability, large local-area networks can be created with a
flat address space, facilitating virtual machine migration in
the datacenter.

An Axon network is more flexible than a traditional Eth-
ernet network and supports both arbitrary topologies and
arbitrary routes. Source routing enables the use of redun-
dant paths that can increase available network bandwidth
compared with traditional Ethernet. Further, this datalink
layer protocol provides a substrate that is compatible with
many recent innovations in large-scale network design. For
example, the SPAIN routing algorithm can be implemented
on an Axon network without using the VLAN tricks required
with traditional Ethernet, and PortLand and Hedera can be
implemented without limiting topology requirements.

The Axon hardware prototype demonstrates full compat-
ibility with unmodified hosts and improved performance.
Axons can saturate 1Gbps Ethernet links and forward pack-
ets in less than 1 us per hop by using cut-through routing,
in contrast to 7-28 us per hop with switched Ethernet.
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