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Abstract 
 
 

Embedded Vector Processor Architecture for 
Real-Time Wavelet Video Compression 

 
 

by 
 

Jeffrey Shafer 
University of Dayton 

 
Dr. John G. Weber, Chair 

 
 

In this thesis, a scalable vector processor is designed and implemented using 

VHDL on an Altera Stratix-series FPGA. The primary application of this processor is to 

compute forward and inverse wavelet transformations using matrix multiplications. This 

transformation is the fundamental component of a wavelet video compression system, 

and the ability to compute the transform in real-time with a low power device would be 

very advantageous for embedded civilian and military applications.  

 
This method of computation combines both the flexibility of software with the 

high performance of custom logic by incorporating several unique features. First, it 

supports a sparse matrix multiplication approach to the wavelet transform. This method 

saves both computation time and memory, as only the wavelet coefficients need to be 

stored, and not a full transformation matrix.  

 
Second, the machine has a Harvard architecture, which separates instructions and 

data. The fetch unit has an embedded dual-port memory containing the instructions, and 

it automatically preloads instructions in both possible directions of a branch, eliminating 

costly stalls if the branch is taken. 
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Third, a dedicated multiply and accumulate operation is provided to assist in 

computing the matrix multiplication. Through an innovative packed pixel scheme and the 

aid of three parallel ALUs, all three color planes of a standard image are transformed in 

parallel, greatly increasing compression performance. 

 
Fourth, a special instruction was added to automatically stream data from input 

pins to data memory. This is used to incorporate the processor into a full compression 

system containing other modules such as quantizers or encoders. 

 
When programmed in VHDL and fitted on an Altera Stratix FPGA, less than 2% 

of the reconfigurable resources available on the FPGA were used. Additional modules for 

quantization or encoding could easily be added on the same chip. The current 

performance of the processor at 75 MHz was sufficient to allow the full transformation of 

19+ 256x256 color images per second. Although this is not quite real-time video, several 

options exist to improve device performance given that substantial FPGA fabric remains 

unused. Additional ALUs could be added to compute more results in parallel, 

accelerating each instruction. Or, multiple copies of this processor could be instantiated 

to run in parallel. Either of these design options would require adding additional ports to 

the data memory, or increasing its word width to provide higher bandwidth. Any or all of 

these design expansions along with some clock-speed related optimizations should boost 

performance to real-time levels.  

 
Further, last minute tests on the just-released Altera Stratix-II FPGAs yielded a 

33%+ improvement in clock rate without any design changes at all. This fabric was able 

to boost the processor to 106+ Mhz. Thus, it should be easy to foresee real-time 

performance of this processor architecture in the near future. 
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Chapter 1 
 

Introduction 
 
 
1.1  Overview 
 

Video compression is currently a prominent topic for both military and 

commercial researchers, due to the rapid proliferation of digital media and the subsequent 

need to store and transmit it in a space and time-effective manner. Most successful 

compression methods have been based on mathematically transforming an image (or 

sequence of images) into a frequency domain representation, and then filtering that 

representation to obtain a form suitable for effective encoding and compression.  

 
The mathematical process of wavelet image transformations can be characterized 

as a matrix problem. This has two key advantages. First, the transform and reconstruction 

matrices may be computed a` priori, reducing the amount of computation required for 

each image.  Second, the matrix algorithms become identical and depend only upon the 

values in the transform matrix and the image matrix, improving the design’s flexibility. 

Both of these advantages are highly significant for hardware implementations. 

 
Much of the research in image transformation and encoding techniques is 

conducted using software prototypes on commodity PCs. Once effective algorithms are 

identified, some are transitioned to special purpose hardware (VLSI or FPGA) to provide 

real-time or near-real time image compression. For example, the Center for Collaborative 

Computing at the University of Dayton has been active in these endeavors. This research 

group, of which I am a member, performs both software algorithm research and develops 

prototype hardware cores for real-time video compression for embedded military systems 

[Balster, Shafer]. For maximum efficiency and performance, these hardware cores stream 

data from memory through a fixed combination of multipliers and adders to compute 

wavelet transform coefficients. 
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These past research activities by our team have highlighted some of the inherent 

tradeoffs between software and hardware implementations [Shafer]. While the software 

approach allows for quick implementations and superior design flexibility (important in a 

research environment), the dedicated hardware implementation yields much higher 

performance. Further, because the end goal of our research effort is an embedded 

application, such as a real-time video feed to a solider on the battlefield, custom hardware 

still offers critical advantages in smaller size, weight, and power consumption. 

 
Vector processors, though not as general purpose as their scalar cousins, have 

potential for specific applications. Lee and Stoodley examined the use of a simple in-

order long vector microprocessor for multimedia applications. They showed that a 2-way, 

in-order vector processor with a vector length of 64 and a vector width of 8 occupied no 

more die area than a 4-way, out-of-order superscalar processor with short vector 

extensions. More importantly, they showed that the long vector processor outperformed 

the superscalar design by a factor of 2.7 in multimedia applications, and by a factor of 1.7 

against a superscalar design with short vector extensions. However, they did agree that it 

is necessary in many applications to still have an efficient general-purpose processor 

available to sustain effective performance levels across a wide variety of applications 

[Lee]. Although this analysis is perhaps dated (1998) and surpassed by the continuous 

growth of large-scale superscalar designs, its conclusions are certainly still valid in the 

field of small low-power processors for embedded applications (such as video 

compression, the task chosen for this thesis). 

 
In this thesis, a special purpose vector processor is created with the goal of 

producing a low-cost design that combines the performance and flexibility of both 

hardware and software approaches within the framework of embedded video 

compression. This embedded processor will compute the wavelet transformation and 

inverse transformation stage which is fundamental to the overall compression process. 

High performance is delivered by optimizing the hardware architecture for greater 

parallelisms than are possible in a generic commodity processor. In addition, using a 

special purpose processor imparts significant flexibility to the programmer. Using the 

same software algorithm, different wavelets can be computed simply by changing the 
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transformation matrix in memory. Further, non-wavelet transform algorithms can also be 

executed. This is in stark contrast to fixed hardware implementations such as filter banks 

that, while quite efficient in computing the wavelet transform, lack the flexibility to be 

easily adapted to other purposes.  

 
This processor was designed in VHDL using Altera’s Quartus software. The 

design was targeted towards the Altera Stratix series of FPGAs due to their substantial 

size and large on-chip memories. Given an external SRAM memory, however, the design 

could be transitioned to other FPGAs, including those in the Xilinx Virtex and Virtex-II 

families.  

 
1.2 Thesis Organization 
 

This thesis document is separated into eight chapters. Chapter 1 provides the 

background to the compression challenge and a description of the resources used.  

Chapter 2 outlines the growing field of wavelet compression and how matrix math can be 

used to perform a wavelet transformation. Chapter 3 details the traditional vector 

processing architecture and some advanced techniques used to improve performance. 

Chapter 4 proposes a vector processor design that can perform an efficient wavelet 

transform via a matrix multiplication, while Chapter 5 provides details on its 

implementation in VHDL. Chapter 6 covers the simulations done to verify the 

implementation’s effectiveness. Chapter 7 details the incorporation of the vector 

processor into a larger real-time video compression system. Chapter 8 provides a 

summary of the work done and proposes enhancements to the vector processor to 

improve its real-time performance. 

 
1.3 Resources Used 
 

1. Altera Quartus II Design Software version 3.0 SP2 - http://www.altera.com/  

2. Altera Quartus II Design Software version 4.0 

(used after design completion to test performance on new Stratix-II FPGAs)  

3. WinTim32 Table Driven Assembler 

4. General-purpose PC running Windows XP with over 512MB RAM 
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Chapter 2 
 

Wavelet Image Compression 
 
 

As previously mentioned, the design application for this vector processor is real-

time wavelet video compression; specifically, the transform and inverse transform stages. 

In this chapter, the motivations and mechanics of wavelet video compression is 

described. It is noted up-front that video compression in this chapter is limited solely to 

compressing independent images in sequence (i.e. “2-D compression”). The more 

advanced method of examining and exploiting redundancies within a group of successive 

video frames, in what is referred to as 3-D or temporal compression, is not examined for 

this targeted application. 

 
 
2.1 Overview 
 

Image (and by extension video) compression attempts to reduce the number of 

bits required to digitally represent an image while maintaining its perceived visual 

quality.  The field is classified into two main categories: lossless and lossy compression. 

Lossless compression, also referred to as entropy coding, ensures that an exact 

reproduction of the original image can be obtained after decompression, with the 

drawback of only a minimal to moderate reduction in file size. Lossy compression, 

however, achieves a much smaller file size by only ensuring that a “close” reproduction 

will be available after decompression. In this thesis, only lossy compression is discussed. 

 
Image compression exploits two kinds of redundancies in images: spatial and 

spectral [Subramanya].  Spatial redundancy is correlation between adjacent image pixels, 

while spectral redundancy is correlation between different color planes in the image.  

These color planes could either be the three primary colors (R,G,B), or the luminance and 

chrominance (Y,U,V) components. In addition to exploiting spatial and spectral 

redundancies, further data can often be discarded based on careful analysis of what parts 



 

5 

of an image (luminance, hue, saturation, etc.) the human eye is most and least sensitive 

to.  

 
Of the many processes available for image compression, two of the most popular 

transformations are the Discrete Cosine Transform (DCT) used in the common JPEG 

format, and the Discrete Wavelet Transform (DWT) used in the newer JPEG 2000 

format. The DWT differs from the traditional DCT in several fundamental ways. The 

DCT operates by splitting the image into 8x8 blocks that are transformed independently 

[Santa-Cruz]. Through this transformation process, the energy compaction property of the 

DCT ensures that the energy of the original data is concentrated in only a few of the 

transformed coefficients, which are used for further quantization and encoding 

[Subramanya].  It is the discarding of the lower-energy coefficients that results in image 

compression and the subsequent loss of image quality. Unfortunately, the rigid 8x8 block 

nature of the DCT makes it particularly susceptible to introducing compression artifacts 

(extraneous noise) around sharp edges in an image. This is the “halo effect” seen in over-

compressed web images. Because the artifacts become more pronounced at higher 

compression ratios, JPEG’s suitability for line drawings and cartoon-like images is 

significantly impaired. 

 
In contrast to the DCT, the DWT operates over the entire image, eliminating 

artifacts like those caused by the 8x8 DCT blocking. Like the DCT, the fundamental 

wavelet transform is completely reversible, meaning that if the forward and reverse 

transforms are applied in sequence, the resulting data will be identical to the original. In 

addition, the DWT is based on subband coding where the image is analyzed and filtered 

to produce image components at different frequency subbands [Welstead]. This produces 

significant energy compaction that is later exploited in the compression process. The 

wavelet’s two-dimensional nature results in the image visually being divided into 

quarters with each pass through the wavelet transformation. A key effect of this 

transformation is that all of the highpass quadrants in the image contain essentially 

equivalent data [Topiwala]. Because of this homogenization, quantization and encoding 

can be applied to each subband independently, allowing for greater optimization in later 

compression stages for different frequency information.  It is because of these 
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optimizations in compression effectiveness and improved image quality that the new 

JPEG 2000 standard utilizes wavelet transforms instead of cosine transforms. 

 
A wavelet video compression, transmission, and decompression process that 

represents the target application of this vector processor is shown in Figure 1. 

Image

TransformTransform QuantizerQuantizer

De-QuantizerDe-Quantizer Inverse TransformInverse Transform

Camera +
Frame Grabber

EncoderEncoder

Wavelet Compression

DecodingDecoding

Wavelet De-compression

<< Compressed Image Data Transmission <<

Reconstruction

 

Figure 1: Wavelet Compression, Transmission, and Decompression Process 

 

In this process, a single image or video frame is digitized by a camera and frame 

grabber. This image is then fed to a wavelet compression system. First, the compression 

system performs a wavelet transform of the image. This mathematical transform, which is 

perfectly reversible, converts the original image into a form suitable for encoding through 

a reversible spatial frequency separation. Next, the transformed image is quantized. This 

creates redundancy in the transformed image by reducing the number of allowable pixel 

values and thus the number of color or chrominance levels. Quantization is not reversible 

and is the principle cause of data loss in lossy compression. (The other cause of data loss 

can be attributed to floating-point rounding errors when calculating forward and inverse 

transformations with non-integer wavelets). The resulting bitstream from these two stages 

contain large blocks of redundant data that the encoder can easily locate and 

mathematically remove. The encoder is the only step of the process that actually achieves 

compression, which is does by removing redundancy present in the image. It is the 
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function of the transform and quantization stages to create this redundancy for the 

encoder to exploit. 

 
At this point, a single image or video frame has been compressed into a bitstream 

that is some appreciable fraction of its original size, and is ready to be stored or 

transmitted to the destination system. Once at the destination, the process is reversed, 

whereby the image is first decoded, dequantized, and then inversed transformed to arrive 

at what is hopefully a convincing reproduction of the original image.  

 

2.2 Wavelet Transform 
 

In this section, the wavelet transform, which was briefly presented above, will be 

examined in further detail that includes the specific matrix implementation method used 

in the vector processor. 

 
In the field of wavelets, the modified Haar Wavelet (referred to as Haar*) is 

traditionally used for rudimentary image compression because of its algorithmic 

simplicity and low computational complexity due to an integer-based design [Villasenor]. 

This transformation is given by 

⎪
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       (1) 

 
where hn is the scaling function and gn is the Haar* wavelet.  The transformation is 

shown in Figure 2. 
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Figure 2: Discrete Haar* for Multiresolution Analysis 

 
 The application of the Haar* wavelet to a sample image is shown in Figure 3 to 

illustrate its algorithmic simplicity. 

 
Figure 3: Application of Haar* Wavelet to Sample Data [Balster] 

 
In Figure 3, the wavelet was only applied in a horizontal (row-oriented) fashion, and 

through its filtering process produced the scaling function coefficients (low-frequency) 

and wavelet coefficients (high-frequency) shown. From the application of the Haar* 

wavelet, it is evident that the scaling function coefficient is simply the average of two 

consecutive pixel values, while the corresponding wavelet coefficient is the difference 
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between the same two pixel values. The visual effect of this process is shown in Figure 4, 

which also goes one step further and applies the same transformation vertically (column-

oriented). 

 
Figure 4: Successive Filtering of Imaging by Frequency [Balster] 

 
As shown in Figure 4, the scaling function coefficients appear to contain all the 

image data, while the wavelet coefficients appear to be zero (black). If, however, the raw 

data was examined, it would be evident that the coefficients are only mostly zero, an 

effect shown later in Figure 6. In reality, the wavelet coefficients contain the difference 

between adjacent pixel values, which is the high-frequency edge information. Because 

the high-frequency coefficients approach zero, the encoder is more easily able to remove 

redundant information from the image.  

 
Once the full wavelet transformation has been applied to two dimensions, as 

shown by the right-most image in Figure 4, the process can be repeated again by filtering 

only the low-frequencies quadrant of the image. This low frequency quadrant is the 

visible image in the rightmost frame of Figure 4. By repeating the filtering process 

several times over ever-shrinking low-frequency quadrants, the multiresolution aspect of 

the wavelet transform comes into effect. This is shown in Figure 5, which shows the 

frequency results of two passes of the wavelet transform. 
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Figure 5: Frequency Partitioning with Several Frequency Sub-bands [Balster] 

 
Visually, the image is partitioned into smaller and smaller blocks, each containing 

either low-frequency color information or high-frequency edge information, as shown in 

Figure 6. 

 

 
Figure 6: Multi-Resolution (MR) Levels in Wavelet Compression 

 
Because the multiresolution wavelet transform cycles by repeatedly processing 

the low-frequency information, some of the image data is processed more than once. 

Because of this, the lower frequency wavelet coefficients are transformed by a wavelet of 

differing amplitude and duration than the higher frequency wavelet coefficients.  Thus, 
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each sub-band shown in Figure 5 was generated by a different wavelet function.  Figure 7 

gives the different coefficient sub-bands with their corresponding wavelet function. 

 

Wavelet Transform
 Sub-band Levels

0 1

2

3

0

1

2
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Position(n)
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1/8

1/8
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1/2

1
2

3

2

3

1

 
Figure 7: Wavelet Transforms Sub-Bands and their Corresponding Levels [Balster] 

 
Thus, the wavelet transform becomes more selective at isolating low frequency 

components at each multiresolution stage of the transform. 

 

In addition to the fundamental Haar wavelet transform and its derivatives, other 

more computationally complex transforms are available. They are designed to do a more 

efficient job at filtering low and high frequency image components, and suffer from much 

less pronounced blocking artifacts. For example, the Two-Six (TS) Wavelet adds 

additional filter taps for higher performance, as shown in Figure 8 [Villasenor]. 
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Figure 8: Haar* and TS ("Two-Six") Wavelet Filter 

 
The left-most and right-most taps of the TS wavelet are at +1/8 and –1/8 respectively, and 

their power-of-two nature allows them to be replicated in a hardware environment via 

simple bit shifts.  It is noted that the addition of two extra taps translates to a significant 

increase in the number of pixels that must be processed simultaneously to calculate each 

transformed coefficient, and thus system designers need to balance the width of the 

wavelet versus their own computational capabilities. 

 

One well-known wavelet family was first identified by Ingrid Daubechies. It is 

this family, particular the D4 variant, which is integerized and used in the vector wavelet 

hardware system that will be subsequently discussed.  Some examples of the Daubechies 

wavelet family are shown in Table 1. 

 

Table 1: Daubechies Orthogonal Wavelets 

Name Coefficients 
D4 Scaling: -0.1294 0.2241 0.8365 0.4830 

Wavelet:  -0.4830 0.8365 -0.2241 -0.1294 
D6 Scaling: 0.0352 -0.0854 -0.1350 0.4599 0.8069 0.3327 

Wavelet: -0.3327 0.8069 -0.4599 -0.1350 0.0854 0.0352 
D8 Scaling: -0.0106 0.0329 0.0308 -0.1870 -0.0280 0.6309 0.7148 0.2304 

Wavelet: -0.2304 0.7148 -0.6309 -0.0280 0.1870 0.0308 -0.0329 -0.0106
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The floating-point Daubechies wavelets shown in Table 1 can be calculated using 

integer arithmetic if desired for ease of computation. It is simply a matter of picking a 

suitable multiplication factor, say, 26, multiplying that by each coefficient, and rounding 

the result to the nearest integer.  The result of this process is shown in Table 2. 

 

Table 2: Daubechies Wavelets – Integerized Versions 

Name Coefficients 
D4 Scaling:  -8   14   54   31 

Wavelet:  -31   54   -14   -8 
D6 Scaling:    2    -5    -9    29    52    21 

Wavelet:  -21    52   -29    -9     5     2 
D8 Scaling:   -1     2     2   -12    -2    40    46    15 

Wavelet:  -15    46   -40    -2    12     2    -2    -1
 

Then, when computing the wavelet transform, each resulting intermediary and 

final pixel value should be divided by the same factor.  This particular factor can be 

chosen for easy hardware implementation as a division by 26, for example, can be 

accomplished by shifting right by 6 binary positions. Thus, there is essentially zero 

overhead to integerizing the wavelets, as the original multiplication of the wavelet 

coefficients can be computed a` priori, and the subsequent divisions at each stage are 

handled by shifting the results while in transit to their final destination. While this 

method does entail small rounding errors, they tend to cancel each other out in the 

wavelet transform, and thus the final distortion is at least an order of magnitude less than 

the distortion deliberately introduced into lossy compress systems via the quantization 

stage. 

 
One method of calculating wavelet transformations is through a sequence of 

matrix multiplications. Characterizing the transformation algorithms as matrix 

manipulations has two key advantages. First, the transform (and reconstruction) matrices 

may be computed a` priori, reducing the amount of computation required for each image.  

Second, the matrix algorithms become identical and depend only upon the values in the 

transform matrix and the image matrix. Both of these advantages are highly significant 

for hardware implementations. A gray-scale image can be represented by a matrix Im 

where each element is a discrete pixel value. Color images simply consist of a pixel 
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matrix for each color plane. The transform of the image is accomplished by constructing 

a transform matrix, W, and forming the transformed image TIm by the operation 

 
  T

mm WWITI =         (2) 
 
where WT is the transpose of W. This operation performs the two-dimensional 

transformation of the image matrix [Goswami]. The inverse transformation, which maps 

from the transformed image back to the reconstructed image RIm, is simply 

 
  WTIWRI m

T
m = .        (3) 

 
There are restrictions in place on the above transformation equations. The 

transform matrix W must be orthogonal.  That is, its transpose must be its inverse, or  

 
 WWT = WTW = I.        (4) 

 

Bi-orthogonal wavelets such as the Bio9/7 and the Interger 5/3 can be used if the analysis 

and synthesis transformation matrices are computed independently, and are not simply 

the transpose of each other. The application of this class of wavelets is covered in more 

depth in [Qiang]. 

  
Obtaining the transform matrix from the original wavelet coefficients is a 

straightforward process. For example, consider the Daubechies 4 wavelet which has 8 

coefficients (4 scaling and 4 wavelet). Assume the scaling coefficients are numbered C0 

through C3 and the wavelet coefficients C4 through C7. Then, the transform matrix for an 

n x n image is 
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Multiresolution filtering can be performed by repeating the matrix multiplication 

with the upper-left quadrant of the image and an appropriately scaled version of the same 

transform matrix.  Thus, each successive resolution level operates on 25% of the previous 

intermediate image and requires 25% of the computations.  

 
While the computational requirements of performing 5 or 6 multiresolution levels 

are not prohibitive, and in fact asymptotically decreases as the levels increase, it would 

still be preferable if all levels could be computed in a single step. It is precisely this 

motivation that led to the introduction of the one-step wavelet transform by Bo Qiang. In 

this method, an alternate transformation matrix Ŵ  is computed by 
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What the one-step method does, from left to right, is multiply all the transformation 

matrices at every level together, from the highest level N at the left to the lowest level N 

at the right. Because the transformation matrix size decreases (by 75%) at each resolution 

level, all the matrices except the first (on the right) are padded with the identity matrix to 

allow the multiplication to proceed. 
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This method does produce a slightly different arrangement of subbands, as shown 

in Figure 9.  

 
Figure 9: Traditional Transform versus One-Step Method [Qiang] 

 
Bo Qiang showed that this difference demonstrates that the one-step method further 

analyzes the higher frequency subbands of the image, resulting in lower entropy in the 

transformed image, and thus potential for higher compression ratios [Qiang]. 

 
 
2.3 Quantization / Thresholding 
 

The quantizer stage of the image compression process works by performing a 

thresholding operation on the transformed image. Fundamentally, it performs a mapping 

from a continuously-parameterized set V to a discrete set X [Topiwala]. All values within 

a fixed range are set to a single pre-determined value. Values outside of a pre-determined 

maximum and minimum boundary are set to the respective boundary value. The effect of 

this operation is that the resulting bitstream has significantly longer runs of the equivalent 

coefficients for the encoder to exploit. The price of this gain in compression ratio is the 

loss of image richness as neighboring color values are merged into a single intensity. This 

generic thesholding process of quantization is shown in Figure 10. 
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Figure 10: Generic Thresholding and Quantization 

 
Note that the quantizer method in Figure 10 has features a constant step size, which 

insures that all color components “suffer” equally through the quantizer. Other methods 

use a non-constant step size, with smaller steps being reserved for “key” regions of the 

image (to preserve the highest quality), and larger steps for extraneous image regions or 

color components. 

 
 As mentioned previously, one of the key benefits of the wavelet transform is how 

its multiresolution property allows for greater optimization during compression.  To this 

end, each of the three multiresolution (MR) levels in Figure 6 can be quantized with 

different step sizes and upper and lower boundaries. In practice, this results in the first 

MR level having the largest step size and smallest upper and lower boundaries because 

the wavelet transform has already reduced much of the high frequency information to 

zeros. In contrast, the third MR level has the smallest step size and widest upper and 

lower boundaries because much of the low-frequency information is still intact in those 

quadrants. Finally, the last remaining quadrant (in the upper left-hand corner) with all of 

the remaining scaling function coefficients may not quantized at all to preserve image 

quality.  An example of this selective quantization approach is shown in Figure 11. 
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Figure 11: Variable Quantization by Sub-Bands 

 
Here, subbands are either quantized by 2, 4, 8, or 16. What this means in practice is that 

an integer division operation (i.e. bit shift) is performed, and the least-significant bits of 

the image pixels are simply discarded. This provides the desired level of quantization. 

 
 
2.4  Encoders 
 

The encoder is the only stage of the process that actually achieves compression. It 

does this by removing redundancy present in the image. Two common algorithms that are 

used in conjunction with wavelet image compression are Stack-Run and Huffman 

encoders.  

 
Stack-run encoders use raster (i.e. sequential) scanning within subbands to reduce 

the number of bits required to represent the image. They represent the uncompressed 

bitstream as a sequence of pairs (a[n],b[n]) where a[n] is the number of zero-valued 

coefficients before the non-zero-valued coefficient with value b[n]. These binary values 

are mapped into 4-ary arithmetic encoder which has an alphabet of 4 symbols specifically 

designed to eliminate both ambiguity and redundant information [Tsai]. This algorithm is 

effective in reducing long streams of zeros, which the wavelet transform and quantization 

stages commonly produce. 
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Following the application of Stack-Run Encoding, traditional image compression 

processes often employ Huffman coding, also known as entropy encoding.  This process, 

through the systematic use of binary trees, attempts compress the bit stream by assigning 

shorter bit patterns for the most common data elements, and longer bit patterns for the 

less frequent data elements. 

 
Encoders are not implemented as part of this thesis, because their algorithms do 

not contain significant vector components that a vector processor could exploit.  Rather, 

the encoders would be more effectively implemented as a dedicated module that 

processes the transformed image calculated by the vector processor.  

 
 
2.5 Wavelet Transformation in Matlab 
 

The Matlab program shown in this section performs a 3 level multiresolution 

wavelet transform followed by an inverse transformation.  It is the functionality shown in 

this program that the vector processor designed in this thesis attempts to emulate. Not 

included in this Matlab program are any quantization or encoding modules, which would 

not be executed by a vector processor in any case. Those modules are available, however, 

as part of a larger video compression application from which this wavelet transform was 

derived. This Rapid Prototyping Interface (RPI) was developed at the University of 

Dayton to test new wavelet compression technologies. It is available for download from 

http://quickplace.udayton.edu/crc.  

 
 
Matlab Wavelet Transform (Forward and Inverse) 
close all; clear all; clc; 
 
MrLevel = 3; 
filename = '01_256x256.bmp'; 
 
original_image = double(imread(filename)); 
 
% Image must be true-color (3 planes).  Save each plane. 
pic.a = original_image(:,:,1);   % Save color planes to separate 
pic.b = original_image(:,:,2);   % arrays in structured variable 
pic.c = original_image(:,:,3);   % so each can be different size. 
 
% Show original image 
image(uint8(original_image)); 
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set(gca,'Position',[0 0 1 1]) 
axis off 
 
% In this simple program, we assume all color planes are the same size.  
% This may not be the case if fancy downsampling is used in YUV colorspace 
% Set Max to the maximum dimension (length or width) 
single_plane = pic.a; 
Max = max(size(single_plane)); 
 
% The DAUB4 Transform 
h = [-0.1294 0.2241 0.8365 0.4830;  
 -0.4830 0.8365 -0.2241 -0.1294]; 
 
% Initializing the Transform Matrix 
% Note: Wrap-Around Coefficients are added later in the program 
% Initializing transform matrix 
T = zeros(Max+size(h,2)-2,Max); 
 
% Constructing Scalar half of Transform Matrix 
scalar = [h(1,:) zeros(1,Max)]; 
scalar_matrix = repmat(scalar,1,Max/2); 
T(:,1:Max/2) = reshape(scalar_matrix(1:(Max+size(h,2)-2)*Max/2),Max+size(h,2)-
2,Max/2); 
 
% Constructing Wavelet Half of Transform Matrix 
wavelet = [h(2,:) zeros(1,Max)]; 
wavelet_matrix = repmat(wavelet,1,Max/2); 
T(:,Max/2+1:Max) = reshape(wavelet_matrix(1:(Max+size(h,2)-
2)*Max/2),Max+size(h,2)-2,Max/2); 
 
% Constructing Transform Matrix at MrLevel = 1 
SpecificMrLevel = 1; 
x = 2^(SpecificMrLevel-1); 
T_1 = 
cat(2,T(1:Max/x,1:Max/2^SpecificMrLevel),T(1:Max/x,Max/2+1:Max/2+Max/2^Specific
MrLevel)); 
T_1(1:size(h,2)-2,Max/2^SpecificMrLevel+1-(size(h,2)-
2)/2:Max/2^SpecificMrLevel) = T(Max/x+1:Max/x+size(h,2)-
2,Max/2^SpecificMrLevel-(size(h,2)-2)/2+1:Max/2^SpecificMrLevel); 
T_1(1:size(h,2)-2,Max/x+1-(size(h,2)-2)/2:Max/x) = T(Max/x+1:Max/x+size(h,2)-
2,Max/2+Max/2^SpecificMrLevel-(size(h,2)-2)/2+1:Max/2+Max/2^SpecificMrLevel);  
 
% Constructing Transform Matrix at MrLevel = 2 
SpecificMrLevel = 2; 
x = 2^(SpecificMrLevel-1); 
T_2 = 
cat(2,T(1:Max/x,1:Max/2^SpecificMrLevel),T(1:Max/x,Max/2+1:Max/2+Max/2^Specific
MrLevel)); 
T_2(1:size(h,2)-2,Max/2^SpecificMrLevel+1-(size(h,2)-
2)/2:Max/2^SpecificMrLevel) = T(Max/x+1:Max/x+size(h,2)-
2,Max/2^SpecificMrLevel-(size(h,2)-2)/2+1:Max/2^SpecificMrLevel); 
T_2(1:size(h,2)-2,Max/x+1-(size(h,2)-2)/2:Max/x) = T(Max/x+1:Max/x+size(h,2)-
2,Max/2+Max/2^SpecificMrLevel-(size(h,2)-2)/2+1:Max/2+Max/2^SpecificMrLevel);  
 
% Constructing Transform Matrix at MrLevel = 3 
SpecificMrLevel = 3; 
x = 2^(SpecificMrLevel-1); 
T_3 = 
cat(2,T(1:Max/x,1:Max/2^SpecificMrLevel),T(1:Max/x,Max/2+1:Max/2+Max/2^Specific
MrLevel)); 
T_3(1:size(h,2)-2,Max/2^SpecificMrLevel+1-(size(h,2)-
2)/2:Max/2^SpecificMrLevel) = T(Max/x+1:Max/x+size(h,2)-
2,Max/2^SpecificMrLevel-(size(h,2)-2)/2+1:Max/2^SpecificMrLevel); 
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T_3(1:size(h,2)-2,Max/x+1-(size(h,2)-2)/2:Max/x) = T(Max/x+1:Max/x+size(h,2)-
2,Max/2+Max/2^SpecificMrLevel-(size(h,2)-2)/2+1:Max/2+Max/2^SpecificMrLevel);  
 
 
% Transform image 
 
% Pic is a structured array with multiple color planes labeled 
% 'a', 'b', 'c', etc...  Each transform function below 
% is only able to handle a single color plane at a time. Thus, 
% call each function repeatedly for all planes. 
for color_plane = 1:3 
  
 % Convert these numbers to ASCII sequence a,b,c... 
 % ('a' is ASCII 97) 
 index = char(96 + color_plane); 
  
 % Grab just that single color plane and isolate it 
 single_plane = pic.(index); % Iterate through pic.a, pic.b, ... 
      % using dynamic field names 
 % zero-pad image 
 [row,col,plane]=size(single_plane); 
 if(row>=col) 
  transform = zeros(row,row,plane); 
  Max = row; 
 else 
  transform = zeros(col,col,plane); 
  Max = col; 
 end 
  
 % Implementing the Transform 
 transform = single_plane; 
  
 for i = 1:MrLevel 
  x = 2^(i-1); 
   
  % Choose transform matrix for current MrLevel 
  switch(i) 
   case 1 
    T_x = T_1; 
   case 2 
    T_x = T_2; 
   case 3 
    T_x = T_3; 
  end 
   
     transform(1:Max/x,1:Max/x) = T_x' * transform(1:Max/x,1:Max/x) * T_x; 
 end 
  
 single_plane = transform; 
   
 % Put that single color plane back into the structured array 'pic' 
 pic.(index) = single_plane; % Iterate through pic.a, pic.b, ... 
      % using dynamic field names 
end 
 
% Show transformed image 
figure; 
transformed_image(:,:,1) = pic.a; 
transformed_image(:,:,2) = pic.b; 
transformed_image(:,:,3) = pic.c; 
image(uint8(transformed_image)); 
set(gca,'Position',[0 0 1 1]) 
axis off 
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% Inverse transform image 
 
% Pic is a structured array with multiple color planes labeled 
% 'a', 'b', 'c', etc...  Each transform function below 
% is only able to handle a single color plane at a time. Thus, 
% call each function repeatedly for all planes. 
for color_plane = 1:3 
  
 % Convert these numbers to ASCII sequence a,b,c... 
 % ('a' is ASCII 97) 
 index = char(96 + color_plane); 
  
 % Grab just that single color plane and isolate it 
 single_plane = pic.(index);  % Iterate through pic.a, pic.b,  

      % ... using dynamic field names 
 transform = single_plane; 
  
 for i = MrLevel:-1:1 
  x = 2^(i-1); 
   
  % Choose transform matrix for current MrLevel 
  switch(i) 
   case 1 
    T_x = T_1; 
   case 2 
    T_x = T_2; 
   case 3 
    T_x = T_3; 
  end 
   
     transform(1:Max/x,1:Max/x) = T_x * transform(1:Max/x,1:Max/x) * T_x'; 
 end  
  
 single_plane = transform; 
  
 % Put that single color plane back into the structured array 'pic' 
 pic.(index) = single_plane; % Iterate through pic.a, pic.b, ... 
      %  using dynamic field names 
  
end 
 
 
% Show inverse transformed image 
figure; 
itransformed_image(:,:,1) = pic.a; 
itransformed_image(:,:,2) = pic.b; 
itransformed_image(:,:,3) = pic.c; 
image(uint8(itransformed_image)); 
set(gca,'Position',[0 0 1 1]) 
axis off 

 
 

When executed, the above program produces three images. The first, shown in 

Figure 12, is simply the original image before any processing has been performed. 
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Figure 12: Original Image (256 x 256 pixels) 

  
The second image, shown in Figure 13, is the result after the forward wavelet transform. 

Clearly visible are the three multiresolution levels that were performed in the transform 

stage. 

 
 

 
Figure 13: Transformed Image (3 Multiresolution Levels) 
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Finally, Figure 14 shows the result after the inverse wavelet transformation was 

computed. This figure should match the original image since the wavelet transform is 

reversible (except perhaps for some slight floating point arithmetic rounding errors). 

Remember that the lossy quantization stage was not performed in this sample application. 

 

 
Figure 14: Final Image after Inverse Transformation 

 
This Matlab program is analyzed in a future chapter to determine the appropriate 

functionality that must be provided by the vector processor to perform a complete 

wavelet transform.  
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Chapter 3 

 
Generic Vector Processors 

 
 
3.1 Overview 
 

General purpose microprocessors were originally designed to perform scalar 

arithmetic operations on at most two values; e.g. A+B. However, it quickly became 

apparent that this processing paradigm could be enhanced to support vectors or linear 

arrays of data. A single vector instruction could accomplish the same function as multiple 

scalar instructions, increasing the code density. Mathematically, CBA
GGG

=+  is represented 

as [ ][ ][ ][ ]123 VVVVOP , which is executed as [ ][ ][ ]21:3 VVOPVV =  [Flynn].  These vector 

processors are often referred to as SIMD, which stands for Single Instruction Stream, 

Multiple Data Stream. 

 
This new design paradigm led to the development of a host of vector processing 

supercomputers such as the Cray series. These systems are commonly used for scientific 

applications with large datasets and complex data dependencies such as weather 

prediction, crash-test simulations, physical simulations, and weapons simulations 

[Kaxiras]. Because of these systems, common scientific languages such as Fortran 90 

have built-in provisions for SIMD instructions [Jordan]. 

 
To program a vector processor, the program is either explicitly expressed as 

vectors of data, or implicitly contains loops whose data references in memory can be 

programmatically identified as vectors by the compiler. This requires the compiler or 

programmer to vectorize the code, which involves the transformation of loops of scalar 

operations into a sequence of vector instructions. Sophisticated vector processors also 

require compiler to identify independent calculations and generate appropriate code to 

utilize multiple independent hardware execution units [Flynn]. 
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3.2 Vector Processing Advantages 
 

There are several general advantages of using a vector processing paradigm 

instead of a scalar approach. First, vector instructions have significantly higher code 

density compared with a generic scalar system [Espasa]. Depending on the specific user 

program, this can significantly reduce the instruction count necessary to produce similar 

output [Flynn]. Although a single instruction fetch still yields a single (vector) 

instruction, this single instruction initiates a long vector operation. Thus, the bandwidth 

for instruction fetches is negligible in a vector processor compared with instruction fetch 

overheads in scalar designs, which are estimated to be 20-50% [Stone].  A single vector 

operation can represent tens or hundreds of arithmetic operations, and can keep multiple 

deeply-pipelined arithmetic units busy for lengthy time periods [Hennessy]. 

 
In a vector processing system, data is inherently organized in long continuous 

streams for highly efficient and convenient hardware processing. Further, a vector 

operation such as add or multiply inherently represents and removes a simple loop 

construct from the program, reducing “non-productive” overhead from the program 

execution. [Flynn] 

 
When a programmer or compiler uses a vector instruction instead of a sequence of 

scalar operations, it signifies to the processor that the calculation of each vector element 

is independent from all other calculations in that vector. Thus, the processor only needs to 

check for data hazards between vector instructions, and not within a single instruction 

[Espasa]. While the complexity of this dependency checking logic is the similar to a 

scalar processor, the greater effective work produced by a single vector instruction results 

in a far lower control overhead for that architecture [Hennessy]. Similarly, because an 

entire loop can be replaced by a single vector operation, control hazards resulting from 

that loop are non-existent in a vector architecture. [Hennessy]  

 
Further, because there are implicitly no data hazards within a vector instruction, 

the hardware is at liberty to use multiple parallel arithmetic units, a single deeply 
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pipelined unit, or some combination of the two. This imparts significant design flexibility 

and allows for easy creation of families of vector processors with a wide mix of low cost 

or high performance [Hennessy, Espasa]. 

 
There are other hardware design advantages to using a vector processor. For 

instance, they are typically able to efficiently utilize high memory bandwidth because of 

their efficient instruction format (one instruction per long stream of data) and because 

they can be designed with multiple deep arithmetic pipelines [Kaxiras]. Further, 

assuming a proper interleaving technique is used to distribute vector data elements across 

multiple memory modules, the high initial latency in accessing memory is effectively 

distributed across the entire length of the vector, in contrast to a single scalar operation 

[Hennessy]. 

 
Finally, vector processors can be designed to facilitate low power operation due to 

an inherent “localizing” property of vector computations [Espasa]. After a vector 

instruction has been initialized, only the applicable function units, registers, and data 

busses are required to sustain the operation. Other modules, such as the instruction fetch 

unit and reorder buffers are not needed until the next vector instruction, which may be 

dozens or hundreds of data calculations away. Thus, they can be shut down to save 

power. 

 
 
3.3 Vector Processing Disadvantages 

 
The advantages of vector processors do not come without several disadvantages 

as well. The most significant, in comparison to scalar machines, is that effective cache 

designs on vector processors are difficult to achieve for several reasons. First, a few 

vectors could completely fill a small-to-medium size cache, requiring caches on vector 

processors to be larger than their scalar cousins. Second, vector data often has poor 

temporal locality.  This is because the data in large, long-running scientific applications is 

unlikely to be accessed again in the near-term, leading to a near-continuous cache misses 

and significant cache turnover [Flynn].  
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Perhaps the simplest method of dealing with the low cache effectiveness of vector 

processors is to decouple the processing unit from memory by using a vector register set. 

This register set bypasses the cache on loads/stores, leaving the cache to only store scalar 

data [Flynn]. 

 
Even assuming a large vector cache was provided in a vector processor, a second 

fundamental drawback remains. Effective vector processors operating on long vectors 

require high-bandwidth memory systems, which are expensive to design and implement 

[Flynn, Espasa]. Further, these systems are increasing difficult to achieve, as processor 

speed has increased far more rapidly than memory speeds, worsening the relative 

performance gap as time progresses [Gee]. 

 
 

3.4 Generic Vector Processor Architecture 
 
In vector processors, as in scalar systems, an effective memory architecture is 

critical to the performance of the final system. For a SIMD system, two architecture 

design choices are the most important.  First, how should the memory system be 

partitioned, so that data can be accessed in parallel?  Second, once the data is partitioned, 

how will the bus structure route data to the multiple arithmetic units simultaneously? 

[Jordan]  The second assumes, of course, that most vector processors will have multiple 

arithmetic units to accelerate performance. 

 
There are two generalized architectures for vector processors, as in scalar 

machines. The first is a vector-memory architecture, where all operands are fetched 

directly from memory.  The second is a vector-register architecture, which contains a 

high-speed local register set which is the source for all data with the exception of load 

and store operations.  

 
The first generation of vector systems were designed with main memories with 

sufficient bandwidth to keep all computation units supplied with data. However, this 

became increasing difficult to do because of the processor-memory performance gap. 

Thus, designs in the past decade have consistently added a local high-speed memory bank 
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in the form of registers on-chip [Stone]. All commercials designs since the 1980’s have 

been of this vector-register architecture, including the Cray Research systems, the 

Japanese supercomputers, and the Convex mini-supercomputers [Hennessy]. 

 
There are several major components of a typical vector processor system, 

including vector registers, scalar registers, arithmetic units, cache, and memory. These 

systems are linked with data paths as shown in Figure 15. 

 

 
Figure 15: Major Data Paths in Generic Vector Processor [Flynn Figure 7.14] 

 
Vector processors typically include a “standard” scalar unit, which could be an 

out-of-order or VLIW design [Hennessy]. A fast scalar unit is important to execute the 

control logic around the core vector instructions, which can often be quite substantial.  

 
The vector register set of a generic processor usually stores at least 8 or more 

vectors, each containing 16-64 data elements. In high-end computational machines 

(which are the primary market for dedicated vector architectures), these data elements are 

typically a 64-bit floating point values [Flynn]. Like scalar registers, vector registers are 

manipulated using special load and store functions.  In most designs, operations using a 
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register cannot proceed until prior loads (from memory) or stores (from the ALU) are 

complete [Flynn].   

 
The system performance is necessarily limited by the number of register ports. 

Each concurrent load or store operation requires an input port, while ALU operations 

require at least one input and one output port. [Flynn]. An advanced vector processor may 

attempt to process several independent instructions concurrently, further increasing the 

number of register ports. To support these ports, designers often build vector registers 

from interleaved combinations of smaller registers. 

 
The use of a vector register set in a vector-register architecture has one significant 

drawback compared to the vector-memory architecture. By using vector registers instead 

of directly accessing main memory, it becomes much more difficult to allow vectors to be 

of arbitrary length [Flynn]. Thus, there is typically some design tradeoff that allows for 

some resource inefficiencies (e.g. only fill up half of a vector in the register) in exchange 

for the faster access times of the register file. 

 
The functional or arithmetic units of a vector processor are often similar or 

identical in design to those of their scalar cousin, with often the only difference being that 

several are used in parallel in the vector machine to allow for simultaneous calculations 

of multiple data elements. (Recall that the elimination of data hazards within a vector 

instruction is a key advantage of this architecture and thus should be taken advantage of 

to the maximum extent feasible.)  These arithmetic units can calculate operations such as 

addition, subtraction, or multiplication across corresponding elements of two vectors.  

These functions are typically pipelined to produce an operation per cycle execution rate 

without being so deep as to lengthen overall execution time unnecessarily beyond 

perhaps 2-4 cycles [Flynn]. Division is typically an exception to this rule, and some 

architectures such as the Cray systems prefer to perform a reciprocal operation that can 

be more easily pipelined [Jordan]. This is because the reciprocal approach uses four 

shorter instructions in sequence to (1) approximate the reciprocal of an operand, (2) 

calculate a correction factor, (3) multiply reciprocal by the other operand, and (4) to 

multiply the result by the correction factor. 
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Logical operations such as comparisons, tests, shifts, negate, and the usual 

and/or/xor functions are typically included. These comparisons and tests are between a 

vector against either another vector or zero produce either a 1-bit logical (1 or 0) vector 

result, or alternatively a more compact and efficient scalar result where each logical bit 

corresponds to a vector element [Flynn]. 

 
Beyond the previously mentioned operations, which are common to both vector 

and scalar machines, vector processors add a new family of operations uniquely suited to 

their architecture. First are the Expand and Compress operations between a scalar and a 

vector. The expand operation takes a vector and a scalar bit map and zeros out entries in 

the vector that correspond to zeros in the scalar.  This is shown below in Figure 16. 

 
Register Values: 
 
S1= 1010 
V1= 1.1, 1.2, 1.3, 1.4.   

Instruction: 
 
VEXP V1, S1, V2 

Result: 
 
V2 = 1.1, 0, 1.2, 0 

 
Figure 16: Expand Operation example 

 
The compress operation also takes a vector and a scalar, but instead of zeroing out 

specific indices, it omits all entries in the vector that correspond to a zero in the scalar bit 

map. This is shown below in Figure 17. 

 
Register Values: 
 
S1 = 1010 
V1 = 1.1, 1.2, 1.3, 1.4 

Instruction: 
 
VCPRS V1, S1, V2
  

Result: 
 
V2 = 1.1, 1.3 

 
Figure 17: Compress Operation example 

 
Vector arithmetic units typically contain an accumulator. This is quite useful in 

the Vector Dot Product (Inner Product) operation, which is also referred to as Multiply & 

Accumulate. This “compound instruction” calculates ∑
=

→
n

i

SiViV
1

.2*.1 , which is 

recognized as the key component of a full-scale matrix multiplication [Flynn]. 
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Vector operations on vectors of unequal length can be handled in one of several 

manners. The vector length could be specified in each instruction. Or, unused elements in 

fixed-length vectors could be required to be filled with zeros. Or, unused elements could 

be filled with NaN, and all calculations with a NaN input set to produce a NaN result, as 

is commonly done in the IEEE floating-point specification [Flynn]. 

 
A common term in vector processor arithmetic units is vector “strip mining.” 

What this refers to is simply processing a lengthy vector in multiple shorter iterations. 

Thus, for example, if a processor had 4 parallel arithmetic units, a long vector would be 

processed 4 elements at a time [Jordan]. 

 
 
3.5 Advanced Vector Techniques 
 

There are several advanced vector processing techniques used in modern 

microprocessors to improve performance. The first, pipelining of the arithmetic unit, 

should always be done for maximum efficiency [Flynn]. Pipelining allows arithmetic 

units to produce results at a much faster rate than their inherent latency allows them to 

produce a single result. Further, it allows slower memories to be coupled to a faster 

arithmetic unit [Stone]. The choice to pipeline a design assumes that instructions have a 

large number of operands, which is a reasonable choice since that is the design 

methodology of a vector architecture. Thus, once an operation is initialized it can operate 

at the cycle rate of the machine [Flynn]. See Figure 18 for the approximate timing of a 4-

stage pipelined arithmetic unit. 
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Figure 18: Generic Timing for 4-Stage Arithmetic Pipeline [Flynn Figure 7.4] 

 
The second advanced vector technique is referred to as “vector chaining.” This 

technique allows execution of more than one vector arithmetic operation per clock cycle. 

This is made possible when the results of the first operation can be directly fed in as an 

operand to the second operation, without first buffering it in a vector register or memory 

[Flynn]. This can be seen in Figure 19 and Figure 20 below. 

 

 
Figure 19: Vector Chaining Data Paths [Flynn Figure 7.13] 
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…

…

+

*

A[2]

B[2]

A[1]

B[1]

A[0]

B[0]

… D[2] D[1] D[0]

… C[2] C[1] C[0]

… E[2] E[1] E[0] Registers

Two instructions: VADD C, A, B

VMPY E, C, D

 
Figure 20: Data Flow Diagram for Vector Chaining [Based on Flynn Figure 7.12] 

 
As an example of chaining, consider an addition operation followed by a multiply. 

Unchained, it would take 4 cycles (startup) + 64 cycles (elements/vector) = 68 cycles for 

each instruction, or a total of 136 cycles over both operations. With chaining, the system 

performance is enhanced because execution time is now 4 cycles (addition startup) + 4 

cycles (multiply startup) + 64 cycles (elements/vector) for a grand total of 72 cycles to 

complete both operations. 

 
Another common technique to improve vector processor performance is to use 

multiple parallel pipelined execution units. This exploits the fact that there are implicitly 

no data hazards within a vector instruction. A comparison between a single pipeline 

architecture and a 4-unit parallel pipeline system is shown in Figure 21. 
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+

C[0]

+

C[0]

+

C[1]

+

C[2]

+

C[3]

 
Figure 21: Multiple Functional Units for Improved Performance of C = A+B  
[Based on Asanovic Figure 2.4] 

 
Here, while architecture (a) can only compute one result per unit time, architecture (b) 

can compute four results of the “element group” in parallel in the same length of time. 

This is the previously mentioned technique of “strip mining.” The advantage of this 

approach is that the processor throughput increases without a significant change in 

control unit complexity, and no change in the machine instruction code. Further, it allows 

for a wide range of processors in a single design family by simply varying the number of 

parallel arithmetic units [Hennessy]. 

 
Finally, scatter and gather functions are typically part of the load/store module in 

vector supercomputers. These allow convenient support of sparse matrix operations and 

transitioning between a normal data representation (with zeros included) and a dense 

representation (where zeros are omitted). To enable this capability, the gather operation 

takes a vector containing either addresses in memory, or offsets from a base address 

specified in a scalar register. Then, it collects (“gathers”) data from memory and saves it 

in a compacted vector register where all data elements are adjacent. To reverse this 

operation, the scatter operation saves the dense vector data elements to memory at the 

addresses (or offsets) specified in a vector address register [Hennessy, Mathew]. 
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Implementation of scatter / gather capabilities can substantially improve performance on 

sparse matrices with significant numbers of zero entries. 

 
An advanced technique not related to hardware architecture, but used in vector 

systems, is a method to accelerate matrix multiplications. The product of an l x m matrix 

A and a m x n matrix B is a l x n matrix C calculated as ∑
−

=

=
1

0

m

k
jk,ki,ji, BAC . This 

calculation requires l x m x n additions and the same number of multiplications, and has a 

calculation time of )( 3nΘ  [Quinn]. The Strassen Algorithm has a lower computational 

complexity of )7.4( 807.2nΘ  which can improve performance on large problem sets.  In 

this algorithm, only 7 half-size matrix multiplies are required to complete the full matrix 

multiply, compared with 8 using the traditional approach. The remaining multiplication is 

replaced with a shorter sequence of additions, which accelerates the calculation by 

approximately 14%. Further, this algorithm is typically applied recursively to calculate 

the half-sized blocks, and so on, until reaching a certain minimum scale at which point 

the multiplications can be calculated directly with either scalar arithmetic or via the 

traditional cross-product method (if recursion is terminated a few levels earlier). This 

yields an additional 14% theoretical improvement at each recursion level. However, this 

improvement has a practical limit, since, as discussed previously, vector processors are 

typically more efficient in longer vector lengths, not short segments.  Further, there are 

several general tradeoffs in the overall Strassen algorithm at any level to obtain this 

improved theoretical performance. These include greater programming complexity, 

additional storage requirements for temporary values, and greater number of memory 

accesses [Bailey, Huss-Lederman]. 

 
 
3.6 Vector Processor Memory Systems 
 

Just like their scalar cousins, high-speed memory systems are crucial for vector 

processors, since it is desirable for even the simplest of architectures to compute on 

average one arithmetic operation per clock cycle. Thus, the memory system should be 

able to support at minimum one read and one write per clock cycle. This allows for new 
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data to be loaded into the vector registers and for completed data to be written back to 

memory. An improvement would be a memory system that allowed two reads and one 

write, allowing for two vector execution units to operate concurrently.  

 
Without sufficient bandwidth the processor will often be forced into a wait state. 

The greater demands of vector processing cores because of their higher efficiencies on 

large data sets means that designers should not simply append a vector processor to an 

existing scalar design without examining and likely upgrading the memory system 

[Flynn].  

 
When designing a memory system, it is well known that memory accesses often 

need to be made to different physical modules in order to realize the maximum 

theoretical bandwidth [Jordan]. Modern designs typically interleave memory modules 

(each a full word wide) in order to provide sufficient memory bandwidth to the processor. 

This is quite effective for scalar processors, which often access data sequentially, 

spreading out access among different interleaved memory modules. A problem develops, 

however, when using a vector processor to perform matrix calculations from an 

interleaved memory system.  If the calculations are row-oriented, memory accesses will 

be sequential, and the system will operate efficiently. However, if the calculations are 

column-oriented, and particularly if the ‘stride’ of the column in memory is equal to the 

interleaving factor of the hardware, the memory accesses can become unbalanced and 

focused heavily on a single memory module, much to the detriment of overall system 

performance.  The term ‘stride’ refers to the distance in physical memory between 

adjacent words in the virtual vector, which could be column-oriented, row-oriented, 

diagonal, or perhaps even square sub-matrices within the overall virtual memory structure 

[Stone]. 

 
This tradeoff in storage methods of an 8x8 matrix is shown below in Figure 22. 
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(7,7)(7,6)(7,5)(7,4)(7,3)(7,2)(7,1)(7,0)

(6,7)(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)(6,0)

(5,7)(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)(5,0)

(4,7)(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(4,0)

(3,7)(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(3,0)

(2,7)(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)(2,0)

(1,7)(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)(1,0)

(0,7)(0,6)(0,5)(0,4)(0,3)(0,2)(0,1)(0,0)

(7,7)(7,6)(7,5)(7,4)(7,3)(7,2)(7,1)(7,0)

(6,7)(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)(6,0)

(5,7)(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)(5,0)

(4,7)(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(4,0)

(3,7)(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(3,0)

(2,7)(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)(2,0)

(1,7)(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)(1,0)

(0,7)(0,6)(0,5)(0,4)(0,3)(0,2)(0,1)(0,0)

(7,7)(6,7)(5,7)(4,7)(3,7)(2,7)(1,7)(0,7)

(7,6)(6,6)(5,6)(4,6)(3,6)(2,6)(1,6)(0,6)

(7,5)(6,5)(5,5)(4,5)(3,5)(2,5)(1,5)(0,5)

(7,4)(6,4)(5,4)(4,4)(3,4)(2,4)(1,4)(0,4)

(7,3)(6,3)(5,3)(4,3)(3,3)(2,3)(1,3)(0,3)

(7,2)(6,2)(5,2)(4,2)(3,2)(2,2)(1,2)(0,2)

(7,1)(6,1)(5,1)(4,1)(3,1)(2,1)(1,1)(0,1)

(7,0)(6,0)(5,0)(4,0)(3,0)(2,0)(1,0)(0,0)

(7,7)(6,7)(5,7)(4,7)(3,7)(2,7)(1,7)(0,7)

(7,6)(6,6)(5,6)(4,6)(3,6)(2,6)(1,6)(0,6)

(7,5)(6,5)(5,5)(4,5)(3,5)(2,5)(1,5)(0,5)

(7,4)(6,4)(5,4)(4,4)(3,4)(2,4)(1,4)(0,4)

(7,3)(6,3)(5,3)(4,3)(3,3)(2,3)(1,3)(0,3)

(7,2)(6,2)(5,2)(4,2)(3,2)(2,2)(1,2)(0,2)

(7,1)(6,1)(5,1)(4,1)(3,1)(2,1)(1,1)(0,1)

(7,0)(6,0)(5,0)(4,0)(3,0)(2,0)(1,0)(0,0)

(a) Row-Oriented Interleaving

(b) Column-Oriented Interleaving

 
Figure 22: Memory Interleaving Techniques [Based on Stone Figure 5.12] 

 
In section A, the interleaving between distinct memory modules is suitable for access by 

row vectors, but bad for column vectors due to the concentration of access in a single 

module. Similarly, the arrangement in section B is good for access by column vectors, 

but is bad for access by row vectors. 

 
Further, either a long stride or the nature of the special-purpose application can 

negate the positive benefits of a data cache, if one even exists. Performance can even be 

degraded when using a poorly tuned active cache that is designed to anticipate sequential 

memory accesses and actively fetch future data. Active caches could cause further bus 

congestion and memory traffic without any positive benefits. This is because the long 

vector strides ensures that no sequential data may ever be needed [Flynn]. 

 
Too much contention for the same memory band is called a hot spot. This term 

has some correlation to a physical condition, where the memory temperature increases 
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dramatically from continuous use. Although physical temperature can be reduced by 

advanced cooling hardware, the performance bottleneck remains. Thus, a goal of a 

designer is to reduce this bottleneck by either software or hardware schemes [Quinn]. 

 
This memory interleaving problem can be alleviated by using a memory 

architecture that attempts to balance data access across a system with N interleaved 

physical memory modules. Access should be balanced for any stride of memory access in 

the vector, whether the vector is row-oriented or column-oriented. Note that column 

orientation, while a very useful concept for doing matrix manipulations, is a virtual term 

that only has meaning at the programming level, as all memory systems are one 

dimensional. This system is shown in Figure 23. 

 
Figure 23: Vector Memory N-Interleaving System [Flynn Figure 7.17] 

 
Flynn describes a hardware approach to balance data access. In step 1, the 

addresses are hashed. This disperses them throughout the memory system. A common 

hash algorithm used in hardware takes several bits, perhaps 3, that would normally be 

used to select the specific memory module from a group. Then, either an XOR of specific 
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combinations, negation of values, or rearrangement of values is performed. This is shown 

in Figure 24.  

 
Figure 24: Simple Address Mapping (Hashing)   [Flynn Table 7.2] 

 
Hashed memory addresses can reduce memory contention in mixed-application 

environments where the vector access stride is varied. But, in large matrix manipulations, 

contention is likely to reoccur because the same memory stride will be used for a lengthy 

period of time. Thus, further techniques are needed after hashing the addresses. 

 
In step 2, a module mapping is performed with 2k+1 memory modules to 

distribute the hashed address across an odd number of modules. The specific calculation 

performed is (Address mod 2n) mod (2k + 1).  This has the effect of spreading N (even) 

“buckets” of data across N+1 (odd) memory modules, so that neither column-wise or 

row-wise array access will produce unbalanced memory reads such that all requests are to 

the same physical memory module. This wastes 1/(N+1) of the total memory capacity, 

but the performance improvement may be well worth it. This approach is shown in 

Figure 25. 
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(7,7)(7,6)(7,5)(7,4)(7,3)(7,2)(7,1)

(7,0)(6,7)(6,6)(6,5)(6,4)(6,3)(6,2)

(6,1)(6,0)(5,7)(5,6)(5,5)(5,4)(5,3)

(5,2)(5,1)(5,0)(4,7)(4,6)(4,5)(4,4)

(4,3)(4,2)(4,1)(4,0)(3,7)(3,6)(3,5)

(3,4)(3,3)(3,2)(3,1)(3,0)(2,7)(2,6)

(2,5)(2,4)(2,3)(2,2)(2,1)(2,0)(1,7)

(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)(1,0)

(0,7)(0,6)(0,5)(0,4)(0,3)(0,2)(0,1)(0,0)

(7,7)(7,6)(7,5)(7,4)(7,3)(7,2)(7,1)

(7,0)(6,7)(6,6)(6,5)(6,4)(6,3)(6,2)

(6,1)(6,0)(5,7)(5,6)(5,5)(5,4)(5,3)

(5,2)(5,1)(5,0)(4,7)(4,6)(4,5)(4,4)

(4,3)(4,2)(4,1)(4,0)(3,7)(3,6)(3,5)

(3,4)(3,3)(3,2)(3,1)(3,0)(2,7)(2,6)

(2,5)(2,4)(2,3)(2,2)(2,1)(2,0)(1,7)

(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)(1,0)

(0,7)(0,6)(0,5)(0,4)(0,3)(0,2)(0,1)(0,0)

 
Figure 25: Alternate Arrangement with 8 Columns [Based on Stone Figure 5.13] 

 
As shown, both row and column access is equally well supported. Row access has a 

stride of 1, while column access has a stride of 9. The empty elements form the unused 

9th column of the 8 x 8 matrix. 

 
One reason this specific approach was proposed by Flynn and Stone is that the 

implementation overhead is fairly low, especially considering the extensive pipelining 

and overlapping inherent in modern vector processors. The hashing module should have 

1-2 gate delays, while the module address mapping module performs 2 serial bit 

“additions” that add no more than a few clock cycles to the overall system [Flynn]. 

 
 

3.7 Vector Processor Performance Analysis 
 

There are several factors that influence vector processor performance. These 

include: 

  
1. The amount of program code that can be expressed in vector form 

2. The average length of the vectors processed 

3. The startup overhead, which corresponds directly to the length of the pipeline 

4. The number of parallel execution units, and whether those units allow for the 

chaining of operands 

5. The number of operands in memory that can be loaded or stored in parallel 

6. The number of vector registers 



 

42 

 
When analyzing the performance of a vector processor, there are several 

fundamental equations. The first calculates the time to perform a vector operation of 

length L.  

 
pstart LtTLT +=)(   [Jordan]     (7) 

where 

pistart tKTT )1( −+=         (8) 

 
In this equation, startT  is the startup time, iT  is the instruction issue time, pt is the cycle 

time, and (K-1) is the number of cycles required to fill the pipeline before results appear 

[Jordan]. 

 
 The second fundamental equation calculates the efficiency of pipeline usage for a 

vector of length L. 

 

LKtT
LLE

pi +−+
=

)1()/(
)(     [Jordan]   (9) 

 
From this equation, it is seen that the processor efficiency approaches 100% as the vector 

size increases. 

 
The third equation calculates the overall performance speedup of a vector 

processor over a scalar design. 

 

1

11

nonvector%vector% T
S
T

T
T
TS

M

iP
P

⋅⋅⋅
==   [Flynn]   (10) 

 
Here, T1 is the execution time of a generic pipelined processor, SM is the maximum 

speedup of the proposed vector processor, and the percentage of scalar code that can be 

expressed in vector form is known. This SM is generally limited to a factor of 4, or at 

most 6 if the system supported operand chaining and the memory system was expanded 



 

43 

to allow three reads and one write in parallel [Flynn].  This speedup is shown in Figure 

26, which assumes ideal conditions of long vector lengths and no memory contention. 

 

 
Figure 26: Vector Processor Speedup versus Percentage of Vectorizable Code 
 [Flynn Figure 7.22] 

 
Finally, we come to the widely known Hockney and Jesshope vector efficiency 

calculation which produces results in the range of 0 to 1. 

)//(11
1/

2/1nn
RR

+
=∞    [Hockney]     (11) 

 
In this equation, tR ∆=∞ /1  =1/ cycle time of the generic vector pipeline. This measures 

the maximum vector arithmetic execution rate that is sustainable in an un-chained 

processor design.  If the system is chained, the maximum execution rate is simply ∞Rc *  

 
The variable n is the number of elements in a vector register, i.e. the max vector 

length. 2/1n  is the length of a vector that achieves exactly ½ of the maximum 

performance. It is approximately equal to either the number of startup cycles for vector 

arithmetic (the depth of the pipeline plus any memory bus overhead), or the number of 

overhead cycles when loading a vector from memory [Hockney]. A plot of relative vector 

efficiency versus relative length is shown in Figure 27. 
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Figure 27: Relative Vector Performance vs. Relative Vector Length [Flynn Figure 7.25] 

 
As expected, the relative vector performance (efficiency) increases as the vector length 

increases. 

 
 
3.8 Real-World Systems 
 

Vector processing capabilities are accessed at many levels in real-world systems. 

At the lowest level, they can be implemented using an assembler that supports the vector 

instructions. This might be useful for low-level device drivers for video cards, but is 

rarely used by application-level programmers except perhaps in small frequently-

executed modules where small program optimizations can generate significant overall 

improvements in system performance.  

 
For applications, vectorizing compilers are typically available for most 

commercial hardware architectures to convert Fortran, C, or Pascal code to vector 

assembly language. This automatic vectorization is the easiest method. It seeks to find 

code loops that can be expressed in a single or combination of vector operations. Its 

effectiveness is limited, however, as it is difficult or impossible to automatically vectorize 

loops containing recursive calls or complex branching operations [Marksteiner]. Other 
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compilers extend existing languages such as C to allow direct vector manipulation from a 

higher level than assembly programming. 

 
Besides assemblers and compilers, vector processing capabilities are often used 

by vectorized program libraries. These libraries, often written by the hardware 

manufacturer, contain dedicated routines for common math functions that have been 

specifically optimized for high vector performance. All the programmer needs to do is 

call the correct function in the abstracted library [Marksteiner]. 

 
While a proper history of commercial vector processors is beyond the scope and 

objective of this thesis, a quick history culminating in a discussion of future trends will 

help put this new custom vector processor in proper perspective. 

 
The first commercial vector processors were the TI-ASC by Texas Instruments 

and the STAR-100 by Control Data Corporation; both introduced in 1972 [Espasa]. They 

utilized a memory-to-memory architecture that featured a long pipeline from memory, 

through the processor, and back to memory. The pipeline took a long time to fill, but was 

very efficient for longer vectors. To take full advantage of memory, it supported 

advanced scatter/gather operations. However, the designers used the same arithmetic 

units for scalar instructions that were used by vector operations. This made that pipeline 

relatively deep, with substantial start-up penalties for each scalar computation 

[Hennessy]. 

 
It was the mistake of these early designers to provide such a slow scalar unit that 

Seymour Cray famously corrected with his ground-breaking Cray-1 system in 1976. His 

new design had a vector-register architecture to reduce memory bandwidth requirements, 

and was the first to implement the concept of chaining vector operations together in the 

ALU. Perhaps most significantly, the Cray-1 was the fastest scalar processor in the world 

when it was introduced. This helped make it a commercial success to customers 

interested in scalar performance, vector performance, or both. The Cray-1 design served 

as the foundation for many future vector processor architectures [Hennessy].  
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Of course, computer technology didn’t stop advancing after 1976. Significant new 

machines from Cray, CDC, and other new companies continued to push performance to 

new heights through the use of deeper pipelines, advanced memory architectures for 

higher bandwidth, more parallel execution units, sparse vector support, and other novel 

enhancements. [Hennessy] provides a brief summary of many of these vector 

architectures, along with additional references. 

 
In recent years, many commercial scalar processors have added vector processing 

instructions to assist the primary scalar unit in intensive computation tasks such as 

multimedia. Several good examples of this are Sun’s VIS for UltraSPARC and Intel’s 

MMX and SSE for Pentium processors. 

 
The Sun VIS for UltraSPARC was the first comprehensive SIMD instruction set 

extension to a general purpose microprocessor. It attempts to solve the problem that while 

SPARC registers, ALUs, and datapaths are 64 bits, many common integer values are only 

8, 16, or 32 bits. Thus, why not put that space to good use by packing multiple integer 

values into a single register, and process them in parallel?  Thus, the VIS extension 

performs SIMD arithmetic within a single register. The packing approach is shown in 

Figure 28. 

  
32-bit Variable: u8 u8 u8 u8  
 

 
32 24 16 8 0 

32-bit Variable: s s16 s s16  
 

 
32 16 15  0 

64-bit Variable: s s32 s s32  
  64 32 31  0 
64-bit Variable: s s16 s s16 s s16 s s16  
 64 48 32 16 15 0 

Figure 28: Sun VIS 1.0 Data Types [Sun] 

 
The first version of VIS was introduced with the UltraSPARC 1 in 1995. It 

operated only on integer and fixed point data. Version 2.0 introduced with the 

UltraSPARC 3. It contains additional instructions for “data shuffling”, which allow VIS 
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to handle incompatible data formats by reordering the packed words during ALU 

operations [Sun]. 

 
Following (and perhaps inspired by) the introduction of VIS by Sun, Intel 

developed what is the most widely distributed family of vector instructions:  MMX, SSE, 

and SSE2. Each instruction set enhancement is a superset of all previous versions. 

 
The original MMX architecture (“MultiMedia eXtensions”) was first added to the 

Intel Pentium processor. Similar to VIS, MMX SIMD instructions are used to operate on 

packed integers in the registers, making it a useful addition to the processor when 

repetitive operations on consistently-formatted data are needed [Intel]. These applications 

are most commonly high performance graphics programs (i.e. video games), although 

scientific and commercial applications can certainly benefit from the capabilities as well.  

 
The MMX extension to the Intel x86 ISA uses 64-bit packed integer data types of 

byte, word, and double word as shown in Figure 29. 

  
         Packed Byte Integers 

63 0  
  Packed Word Integers 

63 0  
 Packed Doubleword Integers 

63 0  

Figure 29: Intel MMX Data Types [Intel] 

 
Eight virtual 64-bit MMX registers were added to the processor to store frequently 

accessed data. These MMX registers are in fact aliased onto the existing floating point 

registers to avoid forcing operating systems to modify their context switch routines. 

Because of this design choice, however, programmers must operate exclusively in SIMD 

or floating point mode for as long as possible to avoid expensive register context switches 

between the modes [Intel]. 

 
A few years after the introduction of MMX, Intel extended the SIMD capabilities 

of its Pentium III product line by developing SSE (“Streaming SIMD Extensions”). SSE 
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is a superset of MMX, and was enhanced to support packed single precision IEEE 

floating-point arithmetic in a SIMD fashion. An SSE-enabled processor can operate on 4 

packed 32-bit (single-precision) values in a single instruction. To provide for full use of 

these capabilities, 8 128-bit floating-point registers were added that can be directly 

addressed by the new SIMD instructions. SSE instructions use the same functional units 

as floating-point instructions, which creates a structural hazard in that the CPU pipeline 

cannot issue both instructions at the same time [Intel].  

 
Continuing this logical progression of upgrades that take advantage of increasing 

transistor counts, Intel added the SSE2 standard to its Pentium IV processor. This 

standard extends SSE to support IEEE double-precision floating point arithmetic. An 

SSE2-enabled processor can operate on 2 64-bit (double-precision) values in a single 

instruction. Further, in those same 128 bits, integer operations can also be performed in 

groups of 8, 16, 32, and 64 bits.  An SSE2-enabled processor can thus alternate between 

calculating low and high precision values depending on application needs, although not 

in the same instruction word. Further, by performing integer operations from the 128-bit 

registers first added in SSE, SSE2 finally removed the bottleneck that MMX first created 

by mapping integer MMX registers on top of the physical floating-point registers [Intel]. 

 
Other vector-inspired co-processing systems include a series by AMD including 

3DNOW, 3DNOW Enhanced, and 3DNOW Professional.  AMD followed a year or two 

behind the Intel extensions and provides similar capability, although without full IEEE 

floating point compliance [AMD].  Besides AMD, Motorola added vector processing 

capabilities with AltiVec for their PowerPC architecture, as did MIPS with MDMX. 

Finally, there are several embedded vector architectures for video processing in the Sony 

Playstation 2 and Nintendo-64 console video game systems [Hennessy]. 
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3.9 Future Directions 
 
The vector processor landscape has changed dramatically over its 30+ year 

lifespan.  In its heyday in the 1980’s, vector designs demonstrated marked superiority 

over scalar machines. As of 2003, however, this performance gap between vector 

supercomputers and pipelined superscalar processors has rapidly decreased. In fact, “The 

peak floating-point performance of the low-cost microprocessors is within a factor of 4 of 

the leading vector supercomputer CPUs” [Hennessy].  

 
The key remaining difference today between commodity designs and 

supercomputer is in memory bandwidth.  In 2002, the fastest commodity processor could 

sustain transfers of approximately 1 GB/sec from main memory, while the fastest vector 

supercomputers have memory architectures that can sustain memory bandwidths 

approaching 50 GB/sec per CPU [Hennessy]. 

 
One key reason for the narrowing of the performance gap is the substantially 

higher clock rates of commercial processors. This is achieved through their more 

advanced design and fabrication methods, made affordable because their development 

expenses can be amortized over huge production runs. (In contract, a supercomputer does 

well if it sells over a hundred individual machines).  Recently, supercomputers have been 

moving away from expensive proprietary bipolar ECL or gallium arsenide fabrics to 

standard CMOS technology to take advantage of recent advances in performance, power 

consumption, and heat dissipation. The technology exchange does go both ways, 

however. As previously mentioned, commodity processors made by Intel and AMD, 

among others, are adding short vector instructions to their architecture [Hennessy]. 

 
Because of the narrowing performance gap, most recent supercomputers, 

particularly in the United States, have been large clusters of relatively cheap commodity 

processors, not special vector processors. Perhaps the final stronghold of vector 

supercomputers is in specialized simulation applications that have large data sets and 

frequent scatter-gather operations from memory. Some of these applications and 

underlying algorithms need to be parallelized to run effectively on clusters of commodity 

machines. It is perhaps inevitable, as Hennessy and others predict, that as this set of 
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vector applications shrinks, vector machines will become unviable as commercial 

products and disappear from the marketplace. But, some of the advantages of vector 

processing architectures will likely persist in the form of SIMD extensions to superscalar 

machines, as has been already done by Intel, AMD, and others [Hennessy]. Further, some 

of these same architectures first pioneered for general purpose vector machines can be 

applied to special purpose processors for dedicated applications. One such application, 

wavelet video compression, is described in the next chapter.  
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Chapter 4 
 

Vector Processor Design for Wavelet Compression 
 

 
4.1 Overview 
 

Vector processing is a proven technology that has been around for several 

decades, most often in high performance, expensive, supercomputers. Recently, though, 

these machines have often been outperformed by lower-cost clusters of commodity 

workstations running superscalar CISC or RISC architectures. However, with the advent 

of the Field-Programmable Gate Array (FPGA) chip and high-level hardware description 

languages, we now have the opportunity to apply this proven technology to specific 

implementations where it would never have been cost effective to do so before. In this 

thesis, a vector processor is applied to the problem of real-time embedded wavelet video 

compression. 

 
There are some specific concerns when designing a processing system for image 

or video processing applications. Like matrix arithmetic with non-unity strides in 

memory, image processing often has problems with cache locality. Many image 

algorithms have a 2-D spatial locality, instead of the typical 1-D locality found in regular 

vector arithmetic and in ordinary scalar computations. This is, they are just as likely to 

request the next pixel up or down from the current location as they are to request the 

adjacent pixel left or right. This vertical dimension, while adjacent in the virtual data 

structure, has no physical adjacency in the hardware memory system. This causes 

significant problems for cache structures that anticipate physical adjacency in memory 

when prefetching and preserving blocks of data. The loss of performance in this cache 

misses can be quite significant [Cucchiara]. In this vector processing system, cache 

memory is not used at all because of the predicted high miss rates mentioned above. 

Rather, on-chip memory is used directly in the FPGA fabric to provide the necessary high 

memory bandwidth for effective computation.  



 

52 

 
The choice of matrix multiplications to calculate the wavelet transform seems 

problematic at first. Certainly, it is a convenient and straightforward method. But, a 

brute-force implementation would be both computationally inefficient and a waste of 

memory to store the full transformation matrix. After all, a single wavelet transform 

using this method has a complexity of O(n2), where n is the number of elements to 

transform.  A closer examination of a typical transformation matrix, however (as shown 

in Equation 5, Chapter 2, page 15) reveals that it is highly sparse with many zero 

elements. Thus, a vector dot product operation which can operate on sparse data can 

retain much of the algorithmic elegance of matrix multiplies while significantly reducing 

their performance and storage overhead. It is just that approach that is applied in this 

vector processor. 

 
The performance benefit of the sparse matrix approach is amplified even further 

by noting a characteristic of the matrix-based wavelet transform: The transformation 

matrix becomes increasingly sparse as the image size increases. Thus, the sparse matrix 

multiply approach becomes increasingly efficient! This is shown in several figures below, 

when the memory requirements of a generic transformation are calculated at the image 

sizes shown in Table 3.  

 
Table 3: Common Image Sizes 

Pixel Count Dimensions 
256 (16x16) 

1,024 (32x32) 
4,096 (64x64) 

16,384 (128x128) 
65,536 (256x256) 

2,621,44 (512x512) 
1,048,576 (1024x1024)
4,194,304 (2048x2048)

 

In a non-sparse method, the number of storage elements to hold the transformation matrix 

must equal the number of image pixels. But, in the sparse method, only the wavelet 

coefficients themselves must be stored (or, perhaps, twice that number to accommodate 

edge wrapping). This benefit is shown in Table 4 and Figure 30. 



 

53 

 

Table 4: Transformation 
Matrix Storage Elements 

Non-Sparse Sparse 
256 16 

1,024 16 
4,096 16 

16,384 16 
65,536 16 

262,144 16 
1,048,576 16 
4,194,304 16 
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Figure 30: Improvement in Storage Requirements 

 

The sparse method is barely even visible at the bottom of the figure! A similar 

improvement is shown when calculating the number of memory accesses to compute a 

transformation. While the non-sparse method is the square of the pixel count, the sparse 

method is the pixel count multiplied by the wavelet length. This is a substantial 

improvement that scales favorably as size increases, as shown in Table 5 and Figure 31. 

 

Table 5: Transformation 
Memory Accesses 

Non-Sparse Sparse 
4,096 2,048

32,768 8,192
262,144 32,768

2,097,152 131,072
16,777,216 524,288

134,217,728 2,097,152
1,073,741,824 8,388,608
8,589,934,592 33,554,432
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Figure 31: Improvement in Memory Accesses Required 
(i.e. Performance) 
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4.2 Instruction Set 
 

The wavelet transformation Matlab program in the preceding chapter was 

analyzed to determine the appropriate set of low-level instructions necessary to provide 

similar functionality. It was determined that a small set of register-based arithmetic 

operations, both vector and scalar, could accomplish the desired tasks. Load and store 

routines with both immediate, direct, and indexed addressing modes were provided to 

manipulate the registers. To further enhance performance, however, a vector multiply and 

accumulate instruction was added to this baseline set that fetches one operand directly 

from memory and saves the result directly to memory. While a noticeable departure from 

a strict RISC organization, this “dot product” operation forms the foundation of a matrix 

multiply, and was the most frequent operation in the final wavelet program. Having its 

operands come from memory reduces the instruction count compared with a pure RISC 

design (no need for adjacent loads and stores), and thus accelerates the final program 

execution speed. 

 
The instruction formats used in the vector processor are shown in Figure 32.  In 

this format, both scalar and vector register labels are 4 bits long. Because only 3 bits are 

actually needed to represent the 8 vector registers, a leading 0 is padded to the label to fill 

the instruction field.  
 

Load / Store Instructions:    VR = Vector Register, SR = Scalar Register 
Op-Code (5) Address / Immediate Data (23) VR / SR (4)

 

Store Indirect Instruction: 
Op-Code (5) Unused (9) SR (4) Unused (10) SR (4)

 

Multiply and Accumulate Instruction: 
Op-Code (5) ALU Mode (5) VR (4) VR (4) SR (4) Unused (6) SR (4)

 

ALU Instruction: 
Op-Code (5) ALU Mode (5) VR / SR (4) VR / SR (4) Unused (10) VR / SR (4)

 

Branch / Jump Instruction: 
Op-Code (5) ALU Mode (5) SR (4) SR (4) Address (14)

  

Figure 32: Instruction Formats 
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Table 6 lists all the instructions of the constructed vector processor, using the 5 

instruction formats listed in Figure 32.  

 

Table 6: Instruction Set for Vector Processor 

Op Opc Operands Description 
NOOP 00000 N/A No operation 
LDS 00001 Addr (23), SR# (4) Scalar Load Direct 
LDSI 00010 Imm (23), SR# (4) Scalar Load Immed. 
STS 00011 Addr (23), SR# (4) Scalar Store Direct 
STSI 01110 0 (9), SR#(4), 0 (10), SR# (4) Scalar Store Indirect 
LDV 00100 Addr (23) 0, VR# (3) Vector Load 
STV 00101 Addr (23), 0, VR# (3) Vector Store 
MLACS 00111 ALU (5), 0, VR# (3), 0, VR#(3), SR# 

(4), 00 0000, SR#(4) 
Vector Mult And Accum 
(Sparse) 

ALU (5), 0, VR# (3), SR# (4), 00 
0000 0000 0 VR# (3) 

Vector ALU Scalar ALUVS__ 01000 

Allowed variants: ADD, SUB, MUL, AND, OR, XOR, NOT, NEG, 
SLL, SRL, SLA, SRA  (e.g. ALUVSADD) 
ALU (5), 0, VR# (3), 0, VR# (3), 000 
0000 0000, VR# (3) 

Vector ALU Vector ALUVV__ 01001 

Allowed variants:  ADD, SUB, MUL, AND, OR, XOR, NOT, NEG 
(e.g. ALUVVADD) 
ALU (5), SR# (4), SR# (4), 00 0000 
0000, SR# (4) 

Scalar ALU Scalar ALUSS__ 01010 

Allowed variants: ADD, SUB, MUL, AND, OR, XOR, NOT, NEG, 
SLL, SRL, SLA, SRA  (e.g. ALUSSADD) 
ALU (5), SR# (4), SR# (4), Addr(14) Scalar ALU Comparison, 

Jump if true 
BRT__ 01011 

Allowed variants: GT, GTE, LT, LTE, EQ, NEQ (e.g. BRTGT) 
JMP 01100 0 0000 0000 0000, Addr (14) Jump (absolute) 
STRM 01111 0 (27) Stream image (in new, out 

old) 
 

An overview of each instruction is described in the following section.   It should be noted 

that the Vector Stride Register (VSR) implicitly maps to scalar register 14, and the 

Vector Length Register (VLR) implicitly maps to scalar register 15. These parameters are 

specified implicitly as registers and not immediate data in the instructions because it frees 

up valuable instruction space and because their values may not always be known at 

compile time [Hennessy]. 
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LDS - Scalar Load 
Operands: Memory Address, Scalar Register 
 
The data in memory at the specified memory address is loaded into the specified scalar 
register. 
 
 
LDSI – Scalar Load Immediate 
Operands: Immediate data 
 
The data in the instruction is loaded into the specified scalar register. 
 
 
STS - Scalar Store 
Operands: Memory Address, Scalar Register 
 
The data in the specified scalar register is stored in memory at the specified memory 
address. 
 
 
STSI - Scalar Store Indirect 
Operands: Scalar Register #1 (holds address), Scalar Register #2 (holds data) 
 
The data in the second scalar register is stored in memory at the address located in the 
first scalar register. 
 
 
LDV - Vector Load 
Operands: Address, Vector Register 
 
The virtual vector in memory at the specified starting address is loaded into the specified 
vector register. The virtual vector in memory has a length specified implicitly by the 
Vector Length Register (VLR).  The virtual vector in memory has a distance between 
elements (“stride”) specified implicitly by the Vector Stride Register (VSR). The VSR 
register only affects the stride when accessing data from main memory. The stride when 
accessing the vector register is always 1. 
 

Note: The VSR has values of 1-16383. Otherwise, results are undefined. 
Note: The VLR has values of 2-32. Otherwise, results are undefined. 
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STV - Vector Store 
Operands: Address, Vector Register 
 
The vector in the specified vector register is saved to a virtual vector in memory. This 
virtual vector starts at the specified address. It has a length specified implicitly by the 
Vector Length Register (VLR) and a stride specified implicitly by the Vector Stride 
Register (VSR). The VSR register only affects the stride accessing of data from main 
memory. The stride when accessing the vector register is always 1. 
 

Note: The VSR has values of 1-16383. Otherwise, results are undefined. 
Note: The VLR has values of 2-32. Otherwise, results are undefined. 

 
 
MLACS - Wavelet / Vector Sparse Multiply and Accumulate 
Operands: VRa# (sparse memory addresses), VRb#(multiplicand), SR# (shift amount), 
SR#(dest) 
 
This instruction is custom designed specifically to optimize the key operation of a matrix 
multiplication when used in a wavelet transform. It performs a multiply and accumulate 
operation which functions as a vector dot product. Unlike the other register-based ALU 
operations, one operand in this instruction comes directly from memory through a sparse 
addressing scheme. The result of the dot product is shifted to the right by a specified 
amount automatically to compensate for the multiplication factor that was applied to 
integerize the previously fractional wavelet coefficients. Finally, the computed result is 
indirectly saved to memory. 
 

Operation performed:  ( ) tShiftAmounxVRbxVRaMem
VLR

x
>>⎟

⎠

⎞
⎜
⎝

⎛∑
=0

)(*)]([  

 
The first vector operand (VRa) contains absolute addresses in memory of data to multiply 
against second vector operand (VRb). This is the only instruction that allow the accessing 
of sparse (i.e. non-uniform stride) data to be accessed. Thus, in this sparse instruction, the 
VSR (stride register) is irrelevant and not used. The Vector Length Register (VLR) 
implicitly contains the length of the vector to be processed. The shift amount is stored in 
the scalar register, although the effective shifting range is limited to 0 to 15.  The final 
result is stored in memory at the address found in the destination scalar register.  
 
The sparse data stored in memory needs to be formatted in a specific manner to function 
correctly. This is because this operation processes 3 color planes simultaneously. Each 
color plane must be packed in 16-bit lengths into the full 48-bit wide data memory.  Each 
packed plane is then multiplied against the same single word stored in the vector register. 
All three parallel results are then concatenated (repacked) before being written back to 
memory. 
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ALUVS – ALU Operation between Vector and Scalar 
Operands:  Vector Register (source), Scalar Register (source2), Vector Register (dest)  
 
An ALU operation is performed between each element in the source vector register and 
the contents of the scalar register. For shift operations, the scalar register must contain the 
shift amount. Each result is stored sequentially in the destination vector register. The 
Vector Length Register implicitly stores the length of the operation.  
 
Valid arithmetic operations are: ADD / SUB / MUL / AND / OR / XOR / NOT / NEG / 
SLL, SRL, SLA, SRA.  The full instruction would be, for example, ALUVSADD or 
ALUVSNEG. 
 
Note: Using NOT / NEG in this vector/scalar operation has the same effect as using it in 
a vector/vector operation.  
 
 
ALUVV – ALU Operation between Vector and Vector 
Operands:  Vector Register (source), Vector Register (source2), Vector Register (dest)  
 
An ALU operation is performed element by element between two vector registers, with 
the results stored sequentially in the third vector register. The Vector Length Register 
implicitly stores the length of the vector operation.  
 
Valid arithmetic operations are: ADD / SUB / MUL / AND / OR / XOR / NOT / NEG. 
The full instruction would be, for example, ALUVVADD or ALUVVXOR. 
 
For shift operations, the ALUVS command between a vector and a scalar should be used 
instead.  
 
 
ALUSS – ALU Operation between Scalar and Scalar 
Operands: Scalar Register (source), Scalar Register (source2), Scalar Register (dest) 
 
An ALU operation is performed between two scalar registers, with the result stored in the 
third scalar register. For shift operations, the second source register must contain the shift 
amount. For single-operand operations (e.g. NOT, NEG), the second source register is 
not used. 
 
Valid arithmetic operations are ADD / SUB / MUL / AND / OR / XOR / NOT / NEG / 
SLL / SRL / SLA / SRA. The full instruction would be, for example, ALUSSADD or 
ALUSSXOR. 
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BRT – Comparison and Branch if True 
Operands: Scalar Register (source), Scalar Register (source2), Destination Address 
 
An ALU comparison is performed between two scalar registers. If the comparison 
condition is true, then the program counter is set to the destination address, and the 
program branches.  
 
Valid comparison operations are:  

• Greater than 
• Greater than or equal to

• Less than 
• Less than or equal to

• Equal 
• Not equal

 
 
JMP – Jump 
Operands: Destination Address 
 
The program counter is set to the destination address, and the program branches. 
 
 
STRM – Stream 
 
An I/O operation is performed. Incoming image data on the 48-bit wide external input 
port is copied to the data memory module, while previously transformed data is copied to 
the 48-bit wide external output port. The address to read and write at any given cycle is 
specified on the 19 bit wide external address port. The stream operation starts when the 
instruction is issued (indicating processor is ready to receive data) and the external write 
enable port is asserted (indicating the external system is ready to send data). The 
operation both sends and receives 1 48-bit word per clock cycle until the external finished 
port is asserted, indicating the external system is finished sending/receiving data. 
 
 
 
 

A summary of the functionality provided by the main ALU is shown in Table 7. 

Entries denoted with a (*) reflect arithmetic operating modes that were initially 

implemented but later removed to conserve device resources because they were not 

needed in the wavelet transformation program. They are simply commented out of the 

VHDL code, and remain in the specification for possible later use. 

 
 
 
 
 
 



 

60 

Table 7: Operating Modes of Primary ALU 

ALU Mode Function 
0 No Operation 
1 Addition 
2 Subtraction 
3 Multiplication 
4 Logical: And 
5 Logical: Or 
6 Logical: Xor 
7 Logical: Not 
8 Logical: Neg 
9 (*) Shift Left Logical  
10 (*) Shift Right Logical 
11 (*) Shift Left Arithmetic 
12 (*) Shift Right Arithmetic 
13 (*) Shift Left Circular 
14 (*) Comparison: Greater than 
15 (*) Comparison: Greater than or equals
16 (*) Comparison: Less than 
17 (*) Comparison: Less than or equals 
18 Comparison: Equals 
19 Comparison: Not Equals 
 
 
 
4.3 Processor Architecture 
 

When designing the processor architecture, one key decision to make was whether 

the system should operate memory-to-memory or register-to-register. Certainly, a 

memory-to-memory architecture would yield the most flexible design, and would reduce 

the processor’s hardware footprint. However, it would require a high-speed memory 

system to be viable (ideally supporting multiple simultaneous reads and writes from 

separate memory banks). Further, if not carefully partitioned, this approach could tightly 

couple the processor design to a specific memory architecture; limiting future use. 

 
In contrast, a register-to-register design would allow for the efficient reuse of 

common data, such as wavelet transformation matrices. But, it would have overhead in 

loading/storing registers from memory, and require a greater hardware footprint due to 
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the vector register set, which is a complicated module requiring multiple simultaneous 

reads & write ports. 

 
 Based on these factors, a compromise architecture was designed. The primary 

ALU operations are all register based as in a standard RISC machine. This allows for 

efficient reuse of data such as the wavelet coefficients and memory address pointers. But, 

a separate multiply and accumulate instruction was added that can access sparse data 

directly in memory for one of its operands. Thus, some of the benefits of the memory-

memory approach have been incorporated as well. The final vector processor architecture 

as implemented is shown in Figure 33. 
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Figure 33: Vector Processor Architecture  
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As shown in the architecture figure, this processor utilizes a Harvard design with 

separate instruction and data storage elements.  The instruction memory is embedded 

inside the Fetch unit.  It stores 4,096 32-bit wide instructions, although it could easily be 

expanded for longer programs. Further, this instruction memory makes use of the 

inherent dual port memory capabilities of the Altera Stratix devices to have two read 

ports, so the fetch unit can prefetch down both directions of branches. Thus, the branch 

instruction timing is identical regardless of whether the branch is taken. All instructions 

are available immediately following the end of completion of the previous instruction. No 

separate decode state is necessary in the processor control unit.  

 
To facilitate the dual-direction pre-fetching on branches, there are two program 

counters, A and B. Both are interchangeable and increment automatically with each 

instruction. The A counter is initially dominant, meaning that the instructions stored at 

these addresses are routed to the single instruction register. During a branch instruction, 

the non-dominant counter is reset to the branch destination. While the ALU decides if a 

branch should be taken, both counters continue incrementing for several cycles. Thus, 

after 2 cycles, when the ALU determination is ready, two full memory pipelines are 

available, one in the original direction, and the other in the branch direction. If the branch 

is taken, the dominant counter toggles between A and B. This results in a different 

instruction stream being routed to the instruction register. Otherwise, the dominant 

counter and instruction routing stays the same. In either case, both counters resume 

incrementing in subsequent instructions. 

 
In the actual system implementation, instruction memory is initialized on the 

FPGA when the design is compiled by use of a .MIF (Memory Initialization File). There 

is no provision made in the architecture to change the program at any later stage. Of 

course, memory could be easily enlarged to allow several programs to reside in it at a 

single time (e.g. forward and inverse transforms), and the program control could branch 

between them as necessary. 

 
In addition to the instruction memory, a separate data memory is provided to store 

the wavelet coefficients, the incoming image, and temporary values during computation. 
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It stores 32,768 48-bit wide elements, which is enough for 2 128x128 pixel images to be 

stored with one 16-bit pixel from each of the three color planes packed into a 48-bit 

word. This memory currently utilizes the on-chip M-RAM blocks on the Stratix device, 

which limits its maximum size to approximately 131,072 48-bit words in current devices. 

When loading data into the 24-bit wide scalar and vector registers, only the least-

significant 24 bits are saved. The full 48-bit memory width is only utilized by the wavelet 

multiply and accumulate instruction, which is the most common instruction in the 

prototype wavelet transform program. 

 
The M-RAM blocks used to construct the data memory cannot be initialized at 

startup via a .MIF file as was used in the much smaller instruction memory. This is not a 

difficulty, however, because in any real-world system the incoming image stream would 

not be known at compile time. In this system, the streaming data instruction is used after 

the vector processor has been activated. It connects the on-chip memory to external data 

pins to both load and unload raw and processed image pixels. In the system simulation, 

these external pins are connected to a small memory which contains image data used to 

verify processor operation. 

 
The vector registers are created using on-chip memory elements. The vector 

register stores 8 vectors that are each 32 24-bit wide words. Three ports were desired to 

allow for 2 concurrent reads and 1 write. Because the built-in memory is only dual-

ported, two separate identical memories were used with connected write ports. Thus, each 

vector is actually stored twice, once in each memory. Each virtual vector read port can be 

connected to a separate port on the physical memory, facilitating the desired number of 

ports.  

 
Because the vector register is stored as a one-dimensional array of data in 

memory, an embedded multiplier is used in the register control unit to calculate the 

effective address in memory given a vector number and an offset within the vector. 

Because the multiplication factor is constant (the maximum length of the vector, 32), one 

port on the multiplier can be hard-wired, allowing for acceptable performance.  It has one 

clock cycle to complete the address computation before the calculated address takes 
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effect at the memory read address port. At that point, one empty fetch cycle is required 

before the first vector element is finally returned on the third cycle. The vector register 

set is pipelined, however, so that this latency only affects the first vector element access. 

  
The scalar register set has 3 ports allowing for 2 concurrent reads and 1 write. 

Each of the 16 register elements is 24 bits wide. Scalar register 14 is implicitly used as 

the Vector Stride Register (VSR), and scalar register 15 is implicitly used as the Vector 

Length Register (VLR).  Both the VSR and the VLR have an additional read port from 

the vector unit so that they are always read. By mapping them onto standard registers, the 

usual complement of load and store instructions can be used to modify them. Unlike the 

vector register, the scalar register set uses on-chip registers instead of memory, and thus 

has a minimal latency of less than 20% of a clock cycle. This performance comes at the 

expense of significant amounts of reconfigurable fabric, as discussed later. 

 
Four arithmetic units are provided in the processor. The primary general-purpose 

ALU computes the full range of arithmetic, logical, and comparison functions are 

described in Table 7.  It is 24 bits wide, which is the width of the vector and scalar 

registers. Three secondary ALUs are provided for the exclusive use of the wavelet 

multiply and accumulate instruction, and allow it to compute all three color planes in 

parallel via a packed pixel approach. Each of these secondary ALUs are 16 bits wide, and 

only perform the multiply and accumulate function. The A input ports are all the same 

least-significant 16 bits from the same vector register (i.e. the wavelet coefficient), while 

the B input ports are fed from distinct packed pixels (i.e. three pixels from the three color 

planes), as shown in Figure 34. 

 



 

66 

MUL&ACCUM

A B

Y

shamt
MUL&ACCUM

A B

Y

shamt
MUL&ACCUM

A B

Y

shamt

Vector Register
(Lowest 16 bits)

Main Memory
(48 bits wide - 3 packed 16-bit wide pixels)

Upper 16 Middle 16 Lower 16

Repack 16-bit results into 48-bit word  
Figure 34: Dedicated Multipliers/Accumulators for Wavelet Instruction 

 
The output from the three dedicated multipliers/accumulators is truncated to the least 

significant 16 bits, which should provide sufficient dynamic range during normal 

computation of the wavelet transform. The multiply and accumulate cycle is repeated for 

the next wavelet coefficient and image pixel for the length specified in the Vector Length 

Register. Upon computation of the last accumulate operation, the three 16-bit 

transformed pixels are then repacked into the 48-bit original format and saved directly to 

memory. 

 
Once the system architecture was fully defined, it was implemented in VHDL, as 

described in the next chapter. 
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Chapter 5 
 

Vector Processor Implementation 
 
 
 The vector processor architecture designed in the previous chapter was 

implemented in VHDL using the Altera Quartus II development environment. This 

chapter provides both a high level view of the processor data paths and a low level view 

of the control signals and multiplexers necessary to manage those data paths. A summary 

report of the FPGA device utilization after fitting is provided, along with performance 

metrics on each instruction. 

 
 
5.1 Data Paths and Control Signals 
 

A description of the processor operation at a high level is shown in Table 8. This 

table was built from the processor architecture figure and an analysis of the instruction 

set. 
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Table 8: Register Transfer Language Processor Description – High Level 

# Instr RTL Description 
0 LDS SR[IR] ← M[IR] Load scalar register from memory 

Go to next instruction 
1 LDSI SR[IR] ← [IR] Load scalar register from immediate data 
2 STS M[IR] ← SR[IR] Store scalar register to memory (direct) 
3 STSI M[SR[IR]] ← SR[IR] Store scalar register to memory (register 

indirect) 
4 LDV VR[IR][Count] ← 

M[IR+Count] 
Initialize counter to zero 
Load vector register from memory 
Repeat until counter equals vector length 

5 STV M[IR+Count] ← 
VR[IR][Count] 

Initialize counter to zero 
Store vector register to memory 
Repeat until counter equals vector length 

6 MLACS Accum ← M[VR[IR][Count]] 
* VR[IR][Count] + Accum 
M[IR] ← Accum 

Initialize counter to zero 
Multiply and accumulate 
Repeat until counter equals vector length 
Store result in memory 

7 ALUVS SR[IR] ← VR[IR][Count] 
                   (ALUOP) SR[IR] 

Initialize counter to zero 
Perform ALU operation between vector 
and scalar 
Repeat until counter equals vector length 
Store result in scalar register 

8 ALUVV VR[IR][Count] ← 
VR[IR][Count] 
               (ALUOP) 
VR[IR][Count] 

Initialize counter to zero 
Perform ALU operation between vector 
and vector 
Repeat until counter equals vector length 
Store result in vector register 

9 ALUSS SR ← SR[IR] (ALUOP) 
SR[IR] 

ALU operation between scalar and scalar

10 BRT CST ← SR[IR] (ALUOP) 
SR[IR] 
→(∨/[CST],!∨/[CST]) 
      /( PC ← IR, No change) 

ALU comparison between two scalar 
registers 
Decode CST register 
If CST = 1, branch directly 

12 JMP PC ← IR Unconditional branch 
13 STRM M[Count] ← Incoming Bus Initialize counter to zero 

Copy pixel on incoming bus to memory 
Repeat until counter equals memory size 

 
 

A low-level description of the processor from the perspective of the control unit is 

provided in Table 9. 
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Table 9: Low-Level Control Unit Description 
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State 

noop 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (*) 
lds_1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 lds_2 
lds_2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 lds_3 
lds_3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 (*) 
ldsi_1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 (*) 
sts_1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 (*) 
stsi_1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 3 0 (*) 
ldv_1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 ldv_2 
ldv_2 1 

(c) 
0 0 0 0 0 0 0 0 0 1 

(b)
1 

(d)
1 

(c)
0 0 1 

(c)
(d)

0 1 
(c)

0 0 0 0 0 0 2 
(f)

0 0 ldv_2 / 
(*) 

stv_1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 stv_2 
stv_2 1 

(c) 
0 0 0 0 0 0 0 0 1 1 

(b)
1 

(d)
1 

(c)
1

(c)
(d)

0 0 0 0 0 0 0 0 0 2 0 2 0 stv_2 / 
(*) 

mlacs_1  0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 mlacs_2 
mlacs_2  0 0 0 0 0 0 0 0 0 1 1 

(b)
1 

(d)
1 

(c)
0 0 0 1 0 1 2 0 3 2 0 3 

(c)
0 0 mlacs_2 

/ 
mlacs_3 

mlacs_3  0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 2 0 0 0 0 mlacs_4 
mlacs_4 1 

(b) 
0 0 0 0 0 0 0 0 0 1 

(b)
0 0 1 

(b)
0 0 0 0 0 2 1 0 0 1 

(b)
0 3 

(b)
0 mlacs_4 

/ (*) 
aluvs_1  0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 aluvs_2 
aluvs_2 1 

(c) 
0 0 0 0 0 0 0 0 0 1 

(b)
1 

(d)
1 

(c)
0 0 1 

(c)
(d)

0 1 
(c)

0 0 0 2 1 0 0 0 0 aluvs_2 
/ (*) 

 
(Continued on next page…) 

 
(a) Conditional upon ALU Condition Status = 1 
(b) Conditional upon Loop 1 Counter Finished = 1 
(c) Conditional upon Loop 2 Counter Finished = 1 
(d) Conditional upon Delay Counter Finished = 1 
(e) Conditional upon Stream Finished = 1 
(f) Conditional upon Loop 2 Counter 2Under = 1 
(*) Jump directly to next instruction 
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(Continued…) 
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State 

aluvv_1  0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 2 0 0 2 2 0 0 0 0 aluvv_2 
aluvv_2 1 

(c) 
0 0 0 0 0 0 0 0 0 1 

(b)
1 

(d)
1 

(c)
0 0 1

(c)
(d)

0 1 
(c)

2 0 0 2 2 0 0 0 0 aluvv_2 
/ (*) 

aluss_1  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 1 0 0 0 0 aluss_2 
aluss_2  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 aluss_3 
aluss_3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3 (*) 
jmp_1  0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 jmp_2 
jmp_2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 jmp_3 
jmp_3  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 jmp_4 
jmp_4 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (*) 
brt_1  0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 1 0 0 0 0 brt_2 
brt_2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 brt_3 
brt_3  0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 brt_4 
brt_4 1 0 0 1 

(a) 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (*) 

strm_1  0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 strm_2 
strm_2 1 

(e) 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 strm_2 / 

(*) 
 
(a) Conditional upon ALU Condition Status = 1 
(b) Conditional upon Loop 1 Counter Finished = 1 
(c) Conditional upon Loop 2 Counter Finished = 1 
(d) Conditional upon Delay Counter Finished = 1 
(e) Conditional upon Stream Finished = 1 
(f) Conditional upon Loop 2 Counter 2Under = 1 
(*) Jump directly to next instruction 
 
 
These signals from the control unit connect with a number of multiplexers in the top level 

VHDL file to switch data paths in the system. The multiplexers and their associated data 

paths are shown in Table 10. 
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Table 10: Top Level Multiplexers 

Signal Function Data Paths 
mux_mem_data_in Memory input 0: memory_data_in = input_data; 

1: memory_data_in(23 - 0) = regs_data_out_a 
2: memory_data_in(23 - 0) = regv_data_out_b 
3: memory_data_in = alu_mlacs_y 
(From wavelet mul/accum) 

mux_mem_rd_addr Memory read 
address 

0:  memory_rd_addr = pc_output 
1:  memory_rd_addr = ir_output 
2:  memory_rd_addr = control_mul_add_result  
    (Mul/add unit handling vector addresses) 
3:  memory_rd_addr = regv_data_out_a    
(Sparse addresses stored in vector) 

mux_mem_wr_addr Memory write 
address 

0: memory_wr_addr = input_addr; 
1: memory_wr_addr = ir_output  
2: memory_wr_addr = control_mul_add_result 
3: memory_wr_addr = regs_data_out_b 

mux_regs_data_in Scalar register 
input 

1: regs_data_in = memory_data_out 
2: regs_data_in = ir_output 
3: regs_data_in = alu_y 

mux_regs_rd_addr_a Scalar register 
 read address A 

0: regs_rd_addr_a = ir_output(3 - 0) 
1: regs_rd_addr_a = ir_output(26 - 23) 
2: regs_rd_addr_a = ir_output(13 – 10) 
3: regs_rd_addr_a = ir_output(21 - 18) 

mux_regs_rd_addr_b Scalar register 
 read address B 

0: regs_rd_addr_b = ir_output(17 -14) 
1: regs_rd_addr_b = ir_output(3 - 0) 

mux_regv_data_in Vector register 
input 

0: regv_data_in = memory_data_out 
1: regv_data_in = alu_y 

mux_delay_max Delay counter 
input 

0: delay_max = 4   
 (Delay when reading from memory) 
1: delay_max = 2   
(Delay when writing to memory or in the 
wavelet mul/accum operation) 

mux_alu_a Primary ALU 
 A input 

1: alu_a = regs_data_out_a 
2: alu_a = regv_data_out_a 
3: alu_a = memory_data_out 

mux_alu_b Primary ALU 
 B input 

1: alu_b = regs_data_out_b 
2: alu_b = regv_data_out_b 

mux_regv_rd_b Vector Register 
Read Address B 

0:  regv_rd_num_b = ir_output(2 - 0) 
regv_rd_off_b<= loop1_count 

1: regv_rd_num_b = ir_output(16 - 14) 
regv_rd_off_b = loop2_count 

2: regv_rd_num_b = ir_output(16 - 14) 
regv_rd_off_b = loop1_count 
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5.2 VHDL Design Hierarchy and Device Utilization 
 
 

The VHDL programming language allows systems to be built in a hierarchy from 

high-level to low-level. In this implementation, ‘cpu’ was the top-level module, and it 

instantiated a number of lower level modules such as the control unit and ALU. Shown 

below in Figure 35 is the actual hierarchy of the implemented system. Also listed on this 

hierarchy is the device utilization by module, which shows, for example, how the multi-

port minimum-latency scalar register set at 536 logic cells occupies more reconfigurable 

fabric than the primary ALU (which, to its credit, uses hardwired DSP blocks on chip to 

save logic cells for other uses).  

 
 
CPU 

• Control Unit – 106 logic cells, 32 registers 
• Fetch Unit – 34 logic cells, 2 registers 

o Instruction memory – 4096 32-bit words 
• Main Memory – 32768 48-bit words 
• Vector Register Set – 24 logic cells 

o Memory (1/2) – 256 24-bit words 
o Memory (2/2) – 256 24-bit words 

• Scalar Register Set – 536 logic cells, 384 registers 
• Instruction Register – 32 logic cells, 32 registers 
• Program Counter (1/2) – 14 logic cells 
• Program Counter (2/2)  – 14 logic cells 
• Primary ALU – 168 logic cells, 142 registers, 8 DSP elements 
• Secondary ALU – 310 logic cells, 144 registers, 6 DSP elements 

o Multiply / Accumulate (1/3) 
o Multiply / Accumulate (2/3) 
o Multiply / Accumulate (3/3) 

• Loop Counter (1/3) – 30 logic cells, 16 registers 
• Loop Counter (2/3) – 35 logic cells, 16 registers 
• Loop Counter (3/3) – 18 logic cells, 7 registers 
• Input / Output Simulator – 68 logic cells, 60 registers 

o Memory – 1024 32-bit words (for simulation only) 
 

Figure 35: Design Hierarchy and Device Utilization by Module 

 
The Quartus-produced chip placement summary for the Statix EP1S80F1020C6 device 

that was used in the design is shown in Figure 36. 
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Total Logic Elements: 1,849 / 79,040 (2%) 
Logic cells  1,849 / 79,040 ( 2 % ) 
Registers  903 / 83,614 ( 1 % ) 
I/O pins  397 / 781 ( 50 % ) 
Clock pins   2 / 20 ( 10 % ) 
Global clocks  3 / 16 ( 18 % ) 
Global signals   3 
 
Memory: 
M512s   0 / 767 ( 0 % ) 
M4Ks   44 / 364 ( 12 % ) 
M-RAMs  3 / 9 ( 33 % ) 
Total memory bits  1,748,992 / 7,427,520 ( 23 % )
Total RAM block bits  1,972,224 / 7,427,520 ( 26 % )
 
On-chip DSP blocks: 

(Number Used - Available per Block - Max Available)
Simple Multipliers (9-bit)  3 8 176 
Simple Multipliers (18-bit)  4 4 88 
Simple Multipliers (36-bit)  1 1 22 
Multiply Accumulators (18-bit) 0 2 44 
Two-Multipliers Adders (9-bit) 0 4 88 
Two-Multipliers Adders (18-bit) 0 2 44 
Four-Multipliers Adders (9-bit) 0 2 44 
Four-Multipliers Adders (18-bit) 0 1 22 
DSP Blocks    5 -- 22 
DSP Block 9-bit Elements  19 8 176 
 

Figure 36: Overall Device Utilization 

 
Clearly, substantial space remains on the FPGA. Although this is the largest Stratix 

device (chosen primarily for on-chip memory), only 2 percent of the reconfigurable 

fabric is being used! Thus, substantial opportunities are available to increase the number 

of parallel pipelines in this processor in future design revisions. 

 

Also of interest in the above figure is the utilization of on-chip memory resources, 

particularly the M-RAM blocks. These blocks are the largest available on-chip, and are 

33% filled with the storage for 2 128x128 images. Unfortunately, then, to process a larger 
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(and perhaps more realistic) image of 512x512, external memories will be needed to store 

the pixel data and intermediate compression values.  

 
 
5.3 Instruction Performance 
 
 

Upon completing the processor implementation, the number of cycles necessary 

to execute each instruction was measured, as shown in Table 11. 

 

Table 11: Instruction Cycle Counts 

Instruction: Cycles: Description: Notes: 
LDS 3 Scalar Load Direct  
LDSI 1 Scalar Load Immediate  
STS 1 Scalar Store Direct  
STSI 1 Scalar Store Indirect  
LDV 6 Vector Load Latency only  

(add vector length) 
STV 4 Vector Store Latency only 

 (add vector length) 
MLACS 10 Vector Sparse Mul & 

Accumulate 
Latency only  
(add vector length) 

ALUVS__ 6 Vector ALU Scalar Latency only  
(add vector length) 

ALUVV__ 10 Vector ALU Vector Latency only 
 (add vector length) 

ALUSS__ 3 Scalar ALU Scalar  
JMP 4 Jump  
BRT__ 4 Jump if Comparison true  
 

These performance numbers will be used in the next chapter to benchmark the processor 

against its real-world wavelet image transformation application. 
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Chapter 6 
 

Vector Processor Simulation 
 
 
 After completing the processor implementation and verifying each instruction 

independently, additional testing was performed to verify its suitability to perform the 

wavelet transform in a real-time system.  

 
6.1 Target Application: Wavelet Transform 
 

First, a wrapper program was written in Matlab to accelerate the design testing. 

This wrapper program, listed below, opens a color image and produces a stream of hex 

values that simulates the input stream of a new image frame to the processor. These 

pixels are 48 bits long and consist of 3 packed 16-bit color planes in sequence. When 

executed, the program produces a hex entry in the format of “00F700FA00F7”, which is 

48 bits long. One word is output per line. The output from Matlab is then copied into the 

Memory Initialization window in the Quartus software to initialize the processor 

simulation with data. 

 
Matlab Wrapper Program 
 
% Wrappper file for HW vector processor 
 
% Part 1: 
% Open a color image and produce a stream of hex values that simulate 
%   the input stream to the processor of a new image frame. These 
%   pixels are 48-bits long and consist of packed 16-bit color planes: 
%   ---------------------------------------------------- 
%   | 16-bits Plane1 | 16-bits Plane2 | 16-bits Plane3 | 
%   ---------------------------------------------------- 
% In this file, these planes are RGB, but they could be YUV or anything else 
% In this file, the source image pixels values are positive integers 
%   in the range of 0-255, but the HW supports signed integers up to 16-bits. 
%   (useful for the wavelet transform which expands the dynamic range) 
 
% Part 2: 
% Open a file containing packed hex digits (output from the vector processor) 
% Unpack and display them on screen. 
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close all; clear all; clc; 
 
image_filename = '01_16x16.bmp'; 
hex_filename = 'hex_input.txt'; 
 
% ** Part 1 ** 
 
original_image = double(imread(image_filename)); 
size_rows = size(original_image,1); 
size_columns = size(original_image,2); 
 
for i=1:size_rows 
    for j=1:size_columns 
         
        % Grab a single pixel from each of the three color planes 
        pix_1 = original_image(i,j,1); 
        pix_2 = original_image(i,j,2); 
        pix_3 = original_image(i,j,3); 
         
        % Convert integer to hex representation, 16 bits wide 
        pix_1_hex = dec2hex(pix_1,4); 
        pix_2_hex = dec2hex(pix_2,4); 
        pix_3_hex = dec2hex(pix_3,4); 
         
        % Pack the color planes into a single 48-bit word 
        packed_pixel = [pix_1_hex pix_2_hex pix_3_hex]; 
         
        % Print the packed pixel  
        % (copy and paste from output into Quartus MIF editor) 
        disp(packed_pixel) 
         
    end 
end 
 
% ** Part 2 ** 
 
% Assume that the size of this image data is the same as the 
% image we just outputed above. 
hex_image = zeros(size_rows,size_columns,3); % Make empty color image 
file_array = textread(hex_filename,'%c'); % Read in entire file to array 
 
k = 1; 
for i=1:size_rows 
    for j=1:size_columns 
         
  % Convert 4 hex digits (packed pixel) to integer 
  pix_1 = hex2dec(file_array(k:k+3)'); 
  pix_2 = hex2dec(file_array(k+4:k+7)');  
  pix_3 = hex2dec(file_array(k+8:k+11)');  
    
        % Save each color plane to the matrix 
        hex_image(i,j,1) = pix_1; 
        hex_image(i,j,2) = pix_2; 
        hex_image(i,j,3) = pix_3;   
  k = k+12; 
   
    end 
end 
 
% Display the imported image 
image(uint8(hex_image)); 
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Further, once the processor simulation using the new image has completed, the memory 

contents in the simulation can be copied into a text file, and then re-imported using the 

second half of the same wrapper program shown above. The wrapper program re-imports 

the packed hexadecimal values and displays the resulting image on screen. Thus, it is 

easy to compare the results of the simulation with the results of the original Matlab test 

program for verification. 

 
 Once the wrapper program was written, the actual wavelet transform assembly 

program was written and assembled using the WinTim table driven assembler. The 

custom definition file written for this assembler is in Appendix A-1. The wavelet 

assembly program is in Appendix A-2. 

 
 
6.2 Simulation Results 
 

The wavelet compression program was loaded into the memory initialization file 

of the processor, and the simulation was started.  After the simulation was completed, the 

current contents of the data memory was copied to a text file and fed back through the 

Matlab wrapper program to analyze the results.  

 
Before the processor simulation was started, the original Matlab wavelet program 

was run on the sample 16 x 16 test image shown in Figure 37. 
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Figure 37: Original Image (16 x 16) (Part of UCAV logo on airframe) 

 
The small image was chosen to keep simulation times to a minimum. The Matlab 

program produced the 1-step transformation image shown in Figure 38. 

 

 
Figure 38: Transformed Image (via Matlab program) 

 
This image is nearly identical to that produced by the vector processor in the Quartus 

simulation, as shown in Figure 39. When comparing the actual coefficient values, there 

were only slight differences (less than 0.1%) that were attributable to the intergerization 

method discussed in the wavelet chapter. 
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Figure 39: Transformed Image (via Vector Processor) 

 
Clearly, the processor has achieved its goal of functional equivalence with the Matlab 

prototype algorithm. 

 
 
6.3 Performance Analysis 
 

In addition to the determination of the instruction cycle counts (Table 11), other 

key performance parameters are summarized in Table 12 

 

Table 12: Key Performance Parameters 

Clock Rate (MHz): 75 
Cycle Time (sec): 1.33333E-08 
Wavelet Length: 4 
Image Size: 256 
Color Planes: 1 
Frames per Second: 30 
 
These parameters that affect the system performance include the clock rate, wavelet 

length (longer is slower), the image size, and number of desired frames per second. Note 

that the “color planes” entry is set to 1, as the processor handles all color planes 

simultaneously via the packed pixel method previously discussed.  
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Using these parameters and a knowledge of the wavelet transformation program, 

it is possible to accurately account for every cycle executed during the transform. This is 

shown in Figure 40. 

 
Per Image Initialization Costs  
(single stage of 2 stages) 
 Instr. Count Total Cycles
LDSI 4 20 
LDV 2 20 
Import/Export N/A 65,536 
   
 =  Cycles/Image 65,576 
   
Single Transform Row  
(single stage of 2 stages, 1 MR Level): 
 Instr. Count Total Cycles
MLACS 256 3,584 
ALUSSxx 258 774 
ALUVSxx 258 2,580 
BRT 129 516 
   
 =Total Cycles/Row: 7,454 
 x Image Rows 256 
 x second stage 2 
 = Cycles/Image 3,816,448 
   
 = Total Cycles/Image 3,882,024 
 x Clock Period 1.3333E-08 
 x Color Planes 1 
 x Frames per sec 30 
 = Total Execution Time (sec) 1.5528096 
 = Frames per Second: 19.3198187 

Figure 40: Transformation Program Performance 

 
Thus, as shown above, the processor does not achieve real-time performance on a 

256x256 test image (19.3 frames per second versus the desired 30). 

 
The vector processor performance was also compared to another technique used 

in computing the wavelet transform: a streaming filter bank. This approach was 

implemented by Bo Qiang for an older Altera Apex FPGA. To more easily compare 

results, his design was recompiled for the same Stratix-series FPGA used in the vector 
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processor design. The streaming approach occupied 2,275 of the 79,040 logic elements 

on the FPGA, and had a maximum clock rate of 98.77 MHz. This allowed the 

computation of nearly 30 frames/sec for a 512x512 pixel grayscale image, or 10 

frames/sec for an equivalently sized color frame. This compares favorably to the vector 

processor, which achieved approximately 5 frames/sec on the same large test image with 

a device utilization of 1,849 logic elements (less than 2%).  

 
There are two reasons why the streaming approach yielded higher performance. 

First, the design had a significantly higher clock rate, which is likely due to its lower 

routing and switching complexity. Second, there is less overhead during execution using 

the filter bank method. Unlike the vector processor, the streaming approach is hard-wired 

to continually execute a predefined sequence of operations. Thus, it does not have to 

increment pointers to data in memory, compare data values, and execute program 

branches. Further, it can utilize a continuous stream of data from memory, instead of 

starting and stopping as intermediate control instructions interrupt the data flow. 

 

Despite some of these drawbacks, the vector processor approach has significantly 

greater flexibility to both perform a wide variety of wavelet transforms, in addition to a 

whole suite of other algorithms that can use vector data. Thus, it is worth pursuing to 

maintain application design flexibility. In the final chapter, a variety of architectural 

improvements are discussed to improve the performance of the processor. 
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Chapter 7 
 

Processor Transition 
 
 

In this thesis, a vector processor was designed and implemented. This processor 

can compute the wavelet transform, the fundamental component of wavelet video 

compression. It is not, however, the only component. As described in Chapter 2, other 

modules including a quantizer and several encoders are needed to actually compress a 

video stream. 

 
Because the vector processor occupied only 2% of the largest Altera Stratix 

FPGA, it is proposed to instantiate these additional modules onto the same FPGA fabric, 

as shown in Figure 41. 

 

FPGA

Wavelet Transform

(Vector Processor)

Memory
(Width = 48 bits)

(Length = 3 x image dimensions + # of wavelet coefficients)
(Dual ports to allow parallel transforms and encoding)

Stack-Run and
Huffman Encoders

Quantizer

Control / Data Management

Uncompressed
Frame (48 bits)

Compressed
Frame (48 bits)

write_enable
finished

 
Figure 41: Proposed System Implementation 
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Here, the incoming video stream would enter the FPGA and be saved by the control unit 

to an external memory module. (Recall that the on-chip memory resources are too limited 

to support image sizes in excess of 128 x 128.) This memory module would likely be 

interleaved to support 4 parallel memory ports (2 read and 2 write), which would allow 

for simultaneous operation of both the vector processor and encoder modules. The 

memory needs to be at least 3 times the desired image dimensions to allow sufficient 

space for temporary copies of the working data set. As in the initial design, the stream 

instruction would be used to synchronize data (both raw and transformed) with the 

external system. Through this design, a single FPGA should be able to perform the entire 

wavelet compression operation on the incoming data stream. 
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Chapter 8 

 
Conclusions & Future Work 

 

In this thesis, a scalable vector processor was designed and implemented using 

VHDL on an Altera Stratix-series FPGA. The primary application of this processor is to 

compute the wavelet transform, which is the fundamental component of a wavelet video 

compression system. Other key compression modules, such as quantization and encoding, 

were not implemented in this thesis.  

 
Two categories of future work are proposed for this processor: (1) Technology 

transition efforts and (2) Performance enhancement efforts. The first, technology 

transition, involves upgrading this design to a complete compression system. That effort 

will involve adding quantization and encoding modules, as well as designing a memory 

system big enough to handle the desired image size. Specific details on this effort are 

currently limited and vary greatly depending on the specific target application. 

 
The other future work category, performance enhancement, however, could be 

done immediately without waiting on further information. When the processor was 

programmed in VHDL and fitted on an Altera Stratix FPGA, less than 2% of the 

reconfigurable resources were used. The current performance of the processor at 75 MHz 

was sufficient to allow the full transformation of 19+ 256x256 color images per second. 

Although this is not quite real-time video, several options exist to improve device 

performance given that substantial FPGA fabric remains unused.  

 
First, the number of dedicated dot-product arithmetic units could be increased 

from the current three to six, nine, twelve, or even more. These are used for the wavelet 

multiply and accumulate operation, which performs the useful work in the wavelet 

transform program. Doubling the number of these arithmetic units would halve the 

execution time of the program, since twice the effective (useful) work could be 
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accomplished with the same amount of non-productive overhead as before. However, the 

memory and vector register subsystems would need to be upgraded to provide the 

necessary bandwidth to operate all of these execution units in parallel. Specifically, the 

vector register bank and memory would need to be widened to allow more data to be 

packed into a single word. Alternatively, the number of read and write ports would need 

to be increased through banking techniques to support increased numbers of simultaneous 

accesses. 

 
If the number of data access ports was increased, additional parallelisms in the 

vector architecture could be exploited.  In addition to adding dedicated dot-product 

ALUs, additional full-featured arithmetic units could also be added to compute other 

vector operations in parallel. These general-purpose ALUs are used for the remaining 

vector mathematical or logical operations. Adding 3 more general-purpose arithmetic 

units to the single primary ALU already in place would allow 4 adjacent vector elements 

to be computed in parallel in a single clock cycle. Since the wavelet used in the test 

program (the Daubechies 4) is only 4 elements long, this would enable it to be 

manipulated in a single cycle plus latency instead of 4 cycles plus latency. Longer 

wavelets (or vectors in general) could still be handled through “strip mining” batches in 

groups of 4. To achieve this performance improvement, the vector register set would 

need to be interleaved in 4 separate banks to support sufficient read ports to keep all 

arithmetic units filled with data. 

 
Another possible performance enhancement would be to instantiate multiple 

copies of this processor to run in parallel. They could either be linked via a single 

instruction memory and thus operate in lockstep, or be completely independent and 

operate on different parts of the image entirely. To fully support independent operation, 

the number of memory read and write ports would need to be doubled. Or, to support 

lock-step operation, the memory width could be increased to 96 bits, and two pixels from 

all color planes packed into a word instead of just one. 

 
The clock rate of the processor could likely be enhanced by creating specialized 

modules for the computation of effective memory addresses in vector instructions. These 
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are currently handled by general purpose adders with moderate latency, and have not 

been fully optimized to exploit the predictability of the memory addresses.  

 
One area that could be studied is the feasibility of processing the wavelet 

transformation in tiles as is done with the DCT in the JPEG standard. These tiles could be 

large (128 x 128), but still a fraction of the proposed image size (512 pixels or above).  If 

this method could be shown to retain acceptable quality compared with applying the 

wavelet over the entire image, it would have several key advantages. First, it would lower 

the on-chip memory requirements. Second, the finer grain of the tiles more closely 

approximates a “streaming” filtering technique that is very desirable when doing real-

time compression, as data will be available much sooner to send to subsequent modules 

such as the quantizer or encoder. 

 
Any or all of these design expansions along with other clock-speed related 

optimizations should boost performance to real-time levels. Further, last minute tests on 

the just-released Altera Stratix-II FPGAs yielded a 33%+ improvement in clock rate 

without any design changes at all. This fabric was able to boost the processor to 106+ 

Mhz. Thus, it should be easy to foresee real-time performance of this processor 

architecture in the near future. 
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Appendices 
 
 
A-1 Table Driven Assemble Definition File 
 
 
; mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 
; ECE 599 - Thesis 
;  
; Instruction Set Definition Table - Vector Processor 
; mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 
 
TITLE Assembly Language Definition File - Vector Processor Design 
WORD  32   ; Word length is 32 bits... 
WIDTH  100  ; Listing file character width is 100... 
LINES  50  ; Listing file has 50 lines per page... 
 
 
; mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 
; Data Pseudo-Ops 
; mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 
 
DW:     DEF     32VH#0000  ;32-BIT DATA DIRECTIVE 
 
; mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 
; Scalar Register Equates 
; mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 
R0:  EQU B#0000 
R1:  EQU B#0001 
R2:  EQU B#0010 
R3:  EQU B#0011 
R4:  EQU B#0100 
R5:  EQU B#0101 
R6:  EQU B#0110 
R7:  EQU B#0111 
R8:  EQU B#1000 
R9:  EQU B#1001 
R10:  EQU B#1010 
R11:  EQU B#1011 
R12: EQU B#1100 
R13: EQU B#1101 
R14: EQU B#1110 
R15: EQU B#1111 
 
; mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 
; Vector Register Equates 
; mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 
VR0:  EQU B#000 
VR1:  EQU B#001 
VR2:  EQU B#010 
VR3:  EQU B#011 
VR4:  EQU B#100 
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VR5:  EQU B#101 
VR6:  EQU B#110 
VR7:  EQU B#111 
 
; mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 
; Instruction Elements 
; (Common pieces of instruction formats) 
; mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 
 
; Instruction Op Codes 
 
ONOOP:  EQU  B#00000 
OLDS:   EQU  B#00001 
OLDSI:  EQU  B#00010 
OSTS:   EQU  B#00011 
OSTSI:  EQU  B#01110 
OLDV:   EQU  B#00100 
OSTV:   EQU  B#00101 
OMLAC:  EQU  B#00110 
OMLACS:  EQU  B#00111 
OALUVS:  EQU  B#01000 
OALUVV:  EQU  B#01001 
OALUSS:  EQU  B#01010 
OBRT:   EQU  B#01011 
OJMP:   EQU  B#01100 
OSTRM:  EQU  B#01111 
 
 
; ALU Control Signals 
 
ALUNOOP:  EQU  B#00000 
ALUADD:  EQU  B#00001 
ALUSUB:  EQU  B#00010 
ALUMUL:  EQU  B#00011 
ALUAND:  EQU  B#00100 
ALUOR:  EQU  B#00101 
ALUXOR:  EQU  B#00110 
ALUNOT:  EQU  B#00111 
ALUNEG:  EQU  B#01000 
ALUSLL:  EQU  B#01001 
ALUSRL:  EQU  B#01010 
ALUSLA:  EQU  B#01011 
ALUSRA:  EQU  B#01100 
ALUSLC:  EQU  B#01101 
ALUGT:  EQU  B#01110 
ALUGTE:  EQU  B#01111 
ALULT:  EQU  B#10000 
ALULTE:  EQU  B#10001 
ALUEQ:  EQU  B#10010 
ALUNE:  EQU  B#10011 
 
 
; Undefined section of instruction 
EMPTY1:  EQU  B#0 
EMPTY10:  EQU  B#0000000000 
 
; mmmmmmmmmmmmmmmmmmm 
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; Instruction Formats 
; mmmmmmmmmmmmmmmmmmm 
 
NOOP:  DEF  ONOOP,  ALUNOOP, 5H#00000, 2B#00 
LDS:  DEF  OLDS,   23VB#00000000000000000000000, 1VH#0 
LDSI:  DEF  OLDSI,  23VB#00000000000000000000000, 1VH#0 
STS:  DEF  OSTS,   23VB#00000000000000000000000, 1VH#0 
STSI:  DEF  OSTSI,  B#000000000, 4VB#0000, B#0000000000, 4VB#0000 
LDV:  DEF  OLDV,   23VB#00000000000000000000000, EMPTY1, 3VB#000 
STV:  DEF  OSTV,   23VB#00000000000000000000000, EMPTY1, 3VB#000 
MLACS: DEF  OMLACS, ALUMUL, B#0, 3VB#000, B#0, 3VB#000, 4VB#0000, 
B#000000, 4VB#0000 
ALUVSADD: DEF  OALUVS, ALUADD, B#0, 3VB#000, 4VB#0000, B#00000000000, 
3VB#000 
ALUVSSUB: DEF  OALUVS, ALUSUB, B#0, 3VB#000, 4VB#0000, B#00000000000, 
3VB#000 
ALUVSMUL: DEF  OALUVS, ALUMUL, B#0, 3VB#000, 4VB#0000, B#00000000000, 
3VB#000 
ALUVSAND: DEF  OALUVS, ALUAND, B#0, 3VB#000, 4VB#0000, B#00000000000, 
3VB#000 
ALUVSOR: DEF  OALUVS, ALUOR,  B#0, 3VB#000, 4VB#0000, B#00000000000, 
3VB#000 
ALUVSXOR: DEF  OALUVS, ALUXOR, B#0, 3VB#000, 4VB#0000, B#00000000000, 
3VB#000 
ALUVSNOT: DEF  OALUVS, ALUNOT, B#0, 3VB#000, 4VB#0000, B#00000000000, 
3VB#000 
ALUVSNEG: DEF  OALUVS, ALUNEG, B#0, 3VB#000, 4VB#0000, B#00000000000, 
3VB#000 
ALUVSSLL: DEF  OALUVS, ALUSLL, B#0, 3VB#000, 4VB#0000, B#00000000000, 
3VB#000 
ALUVSSRL: DEF  OALUVS, ALUSRL, B#0, 3VB#000, 4VB#0000, B#00000000000, 
3VB#000 
ALUVSSLA: DEF  OALUVS, ALUSLA, B#0, 3VB#000, 4VB#0000, B#00000000000, 
3VB#000 
ALUVSSRA: DEF  OALUVS, ALUSRA, B#0, 3VB#000, 4VB#0000, B#00000000000, 
3VB#000 
ALUVSSLC: DEF  OALUVS, ALUSLC, B#0, 3VB#000, 4VB#0000, B#00000000000, 
3VB#000 
ALUVVADD: DEF  OALUVV, ALUADD, B#0, 3VB#000, B#0, 3VB#000, 
B#00000000000, 3VB#000 
ALUVVSUB: DEF  OALUVV, ALUSUB, B#0, 3VB#000, B#0, 3VB#000, 
B#00000000000, 3VB#000 
ALUVVMUL: DEF  OALUVV, ALUMUL, B#0, 3VB#000, B#0, 3VB#000, 
B#00000000000, 3VB#000 
ALUVVAND: DEF  OALUVV, ALUAND, B#0, 3VB#000, B#0, 3VB#000, 
B#00000000000, 3VB#000 
ALUVVOR:  DEF  OALUVV, ALUOR,  B#0, 3VB#000, B#0, 3VB#000, 
B#00000000000, 3VB#000 
ALUVVXOR: DEF  OALUVV, ALUXOR, B#0, 3VB#000, B#0, 3VB#000, 
B#00000000000, 3VB#000 
ALUVVNOT: DEF  OALUVV, ALUNOT, B#0, 3VB#000, B#0, 3VB#000, 
B#00000000000, 3VB#000 
ALUVVNEG: DEF  OALUVV, ALUNEG, B#0, 3VB#000, B#0, 3VB#000, 
B#00000000000, 3VB#000 
ALUSSADD: DEF  OALUSS, ALUADD, 4VB#0000, 4VB#0000, B#0000000000, 
4VB#0000 
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ALUSSSUB: DEF  OALUSS, ALUSUB, 4VB#0000, 4VB#0000, B#0000000000, 
4VB#0000 
ALUSSMUL: DEF  OALUSS, ALUMUL, 4VB#0000, 4VB#0000, B#0000000000, 
4VB#0000 
ALUSSAND: DEF  OALUSS, ALUAND, 4VB#0000, 4VB#0000, B#0000000000, 
4VB#0000 
ALUSSOR: DEF  OALUSS, ALUOR,  4VB#0000, 4VB#0000, B#0000000000, 
4VB#0000 
ALUSSXOR: DEF  OALUSS, ALUXOR, 4VB#0000, 4VB#0000, B#0000000000, 
4VB#0000 
ALUSSNOT: DEF  OALUSS, ALUNOT, 4VB#0000, 4VB#0000, B#0000000000, 
4VB#0000 
ALUSSNEG: DEF  OALUSS, ALUNEG, 4VB#0000, 4VB#0000, B#0000000000, 
4VB#0000 
ALUSSSLL: DEF  OALUSS, ALUSLL, 4VB#0000, 4VB#0000, B#0000000000, 
4VB#0000 
ALUSSSRL: DEF  OALUSS, ALUSRL, 4VB#0000, 4VB#0000, B#0000000000, 
4VB#0000 
ALUSSSLA: DEF  OALUSS, ALUSLA, 4VB#0000, 4VB#0000, B#0000000000, 
4VB#0000 
ALUSSSRA: DEF  OALUSS, ALUSRA, 4VB#0000, 4VB#0000, B#0000000000, 
4VB#0000 
ALUSSSLC: DEF  OALUSS, ALUSLC, 4VB#0000, 4VB#0000, B#0000000000, 
4VB#0000 
BRTGT: DEF  OBRT, ALUGT,  4VB#0000, 4VB#0000, 14VB#00000000000000 
BRTGTE: DEF  OBRT, ALUGTE, 4VB#0000, 4VB#0000, 14VB#00000000000000 
BRTLT: DEF  OBRT, ALULT,  4VB#0000, 4VB#0000, 14VB#00000000000000 
BRTLTE: DEF  OBRT, ALULTE, 4VB#0000, 4VB#0000, 14VB#00000000000000 
BRTEQ: DEF  OBRT, ALUEQ,  4VB#0000, 4VB#0000, 14VB#00000000000000 
BRTNEQ: DEF  OBRT, ALUNE,  4VB#0000, 4VB#0000, 14VB#00000000000000 
JMP:  DEF  OJMP, B#0000000000000, 14VB#00000000000000 
STRM:  DEF  OSTRM, B#000000000000000000000000000 
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Appendices 
 
 
A-2 Wavelet Transform Program 
 
 
; mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 
; Wavelet Transform, 1 MR Level, 16x16 image 
; mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 
 
 
LIST A  ; List addresses on every line rather than just on lines 
      ; where object code is listed 
LIST B  ; List formatted object code in block following end of source code 
LIST F  ; List formatted object code to left of source code if S is on.  
 
 
; ** PROGRAM ** 
; Memory module 1 
; No data allowed here, only instructions 
; All memory reads/writes under program control 
; occur in memory module 2 
ORG H#00  ; Orign = 0  
 
  ; ** INITIALIZATION **  
   
  NOOP ; No instruction (sometimes the simulator "cheats" and makes this  
      ; first memory spot available early. We restore honesty to 
      ; the simulation by ignoring the location entirely) 
   
  ; Define some compiler constants 
  cols: EQU 16 ; Width of image 
  rows: EQU 7 ; Row counter (equal to 1/2 the height - 1) 
        ; The last row is handled separately 
  shift: EQU 6 ; Bit shifting used to "integerize" wavelet transform 
   
  ; Note: Tag "%:" right-justifies and truncates address 
  LDSI 1%:,R14  ; Load VSR with stride=1 
  LDSI 4%:,R15  ; Load VLR with length=4 
 
  ; Stream in new image 
  STRM 
  
  ; Load in all 4 wavelet coef vectors into separate vector registers 
  LDV xform1%:,VR1 
  LDV xform2%:,VR2 
  LDV xform3%:,VR3 
  LDV xform4%:,VR4 
     
  LDSI shift%:, R1 ; Load in the shift amount to shift right in  
      ; the mul&accumulate operation.  
      ; We need this to offset the amount we shifted our transform coefs 
      ; to the left to "integerize" them. 
   
  LDSI 1%:, R10 ; Load value 1 into register for future use  
       ; (incrementing/decrementing counters) 
  LDSI 0%:, R11 ; Load value 0 into register for future use 
       ; (comparison value for loops) 
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  LDSI cols%:,R12 ; Load value 16 (image width) into register for future use 
 
  ; Load in two destination pointers, one at the start of the storage  
  ; space in memory and one halfway through (assume the storage space  
  ; holds a whole frame) These pointers store intermediary results. 
  LDSI image2%:, R2  ; Intermediary results, "top half" of result matrix 
  LDSI (image2+128)%:, R5 ; Intermediary results, "bottom half"  
        ; of result matrix 
 
  ; Load in two vector registers with sparse addresses, i.e. the 
  ; addresses in memory to pull data from in a mul&accumulate operation 
  ; These addresses are all in the same column. 
  LDV spaddr1%:,VR5  ; Sparse addresses for "top half" 
  LDV spaddr1%:,VR6  ; Sparse addresses for "bottom half" 
        ; - start at same location 
  
  ; ** THE WAVELET TRANSFORM, STAGE 1/2 ** 
  ; Outer loop advances the row of X  in X*Y 
  ; Inner loop advances the column of Y in X*Y 
 
  LDSI rows%:, R4  ; Initialize the row counter 
sg1out: LDSI cols%:, R3 ; Initialize the column counter  
  
  ; Compute a segment of a matrix multiply with a single row * column  
  ; Via the sparse register VR5, we ignore coefs that are zero 
  ; We compute the "top half" and "bottom half" inside the same loop. 
  ; Loop and advance, same row, next column... 
sg1in: MLACS VR5, VR1, R1, R2 ; Multiply Mem[VR5(x)] by VR1(x), shift 
        ; right by Reg[R1] positions, and accumulate 
        ; Save result in Mem[R2] 
  ALUSSADD R2, R10, R2 ; Increment destination pointer (R2) by 1 
        ; (stored in R10) 
  ALUVSADD VR5,R10,VR5 ; Increment elements of sparse register by 
        ; 1 to advance to next column 
 
  ; Bottom-half intermediary results 
  MLACS VR6, VR3, R1, R5 ; Multiply Mem[VR6(x)] by VR3(x), shift right 
        ; by Reg[R1] positions, and accumulate 
        ; Save results in Mem[R5] 
  ALUSSADD R5, R10, R5 ; Increment destination pointer (R5) by 1 
        ; (stored in R10) 
  ALUVSADD VR6,R10,VR6 ; Increment elements of sparse register by 1 
        ; to advance to next column 
 
  ; Loop control 
  ALUSSSUB R3, R10, R3 ; Decrement the column counter by 1 
  BRTNEQ R3, R11, sg1in%: ; Does column counter (R3) != 0  If TRUE, 
        ; branch and continue stage 1 inner loop 
   
  ALUVSADD VR5,R12,VR5 ; Increment elements of sparse register by  
        ;  <image width> to skip 2 rows down in same column 
  ALUVSADD VR6,R12,VR6 ; Increment elements of sparse register by  
        ;  <image width> to skip 2 rows down in same column 
  ALUSSSUB R4, R10, R4 ; Decrement the rows counter by 1 
  BRTNEQ R4, R11, sg1out%: ; Does rows counter (R4) != 0. If TRUE, branch 
        ; and continue stage 1 outer loop 
 
 
  ; The middle and bottom rows of this stage use the same coefs in a  
  ; different order and with a difference sparse address (because the  
  ; transform coefs wrap halfway around). The destination counters can  
  ; keep counting in the sequence started in the previous loops 
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sg1btm: LDSI cols%:, R3 ; Initialize the column counter  
 
  ; Load in two vector registers with sparse addresses 
  LDV spaddr2%:,VR5  ; Sparse addresses in "left side" 
  LDV spaddr2%:,VR6  ; Sparse addresses in "right side" - start at same 
location 
 
  ; Compute a segment of a matrix multiply with a single row * column  
  ; Via the sparse register VR5, we ignore coefs that are zero 
  ; We compute the "top half" and "bottom half" inside the same loop. 
  ; Loop and advance, same row, next column... 
  MLACS VR5, VR1, R1, R2 ; Multiply Mem[VR5(x)] by VR1(x), shift right 
        ;  by Reg[R1] positions, and accumulate 
        ; Save result in Mem[R2] 
  ALUSSADD R2, R10, R2 ; Increment destination pointer (R2) by 1  
        ; (stored in R10) 
  ALUVSADD VR5,R10,VR5 ; Increment elements of sparse register by  
        ; 1 to advance to next column 
 
  ; Bottom-half intermediary results 
  MLACS VR6, VR3, R1, R5 ; Multiply Mem[VR6(x)] by VR3(x), shift right 
        ; by Reg[R1] positions, and accumulate 
        ; Save results in Mem[R5] 
  ALUSSADD R5, R10, R5 ; Increment destination pointer (R5) by 1 
        ; (stored in R10) 
  ALUVSADD VR6,R10,VR6 ; Increment elements of sparse register by 1 
        ; to advance to next column 
 
  ; Loop control 
  ALUSSSUB R3, R10, R3 ; Decrement the column counter by 1 
  BRTNEQ R3, R11, sg1btm%: ; Does column counter (R3) != 0  If TRUE, branch 
        ; and continue stage 1 inner loop 
 
 
 ; ** THE WAVELET TRANSFORM, STAGE 2/2 ** 
 
  ; Load in two destination pointers, one at the start of the storage space 
  ; in memory and one halfway through (assume the storage space holds a  
  ; whole frame) These pointers store intermediary results 
  ; In this second stage we overwrite the original untransformed image 
  LDSI image1%:, R2  ; Intermediary results, "left half" of result matrix 
  LDSI (image1+128)%:, R5 ; Intermediary results, "right half" of result matrix 
   
  ; Load in immediate value for later pointer arithmetic 
  LDSI 238%:, R13  ; Used for sparse addresses 
  LDSI 223%:, R7  ; Used for destination address 
 
  ; Load in two vector registers with sparse addresses, i.e. the 
  ; addresses in memory to pull data from in a mul&accumulate operation 
  ; These addresses are all in the same column. 
  LDV spaddr3%:,VR5  ; Sparse addresses for "left half" 
  LDV spaddr3%:,VR6  ; Sparse addresses for "right half" - start at same 
location 
 
  LDSI cols%:, R3  ; Initialize the column counter   
sg2out:LDSI rows%:, R4  ; Initialize the row counter 
  
  ; Compute a segment of a matrix multiply with a single row * column  
  ; Via the sparse register VR5, we ignore coefs that are zero 
  ; We compute the "left half" and "right half" inside the same loop. 
  ; Loop and advance, same column, next row... 
sg2in: MLACS VR5, VR1, R1, R2 ; Multiply Mem[VR5(x)] by VR1(x), 
        ; shift right by Reg[R1] positions, and accumulate 
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        ; Save result in Mem[R2] 
  ALUSSADD R2, R12, R2 ; Increment destination pointer (R2) by  
        ; <image width> (stored in R12) 
  ALUVSADD VR5,R12,VR5 ; Increment elements of sparse register by  
        ; <image width> to advance to next row 
 
  ; Right-half intermediary results 
  MLACS VR6, VR3, R1, R5 ; Multiply Mem[VR6(x)] by VR3(x), shift right 
        ; by Reg[R1] positions, and accumulate 
        ; Save results in Mem[R5] 
  ALUSSADD R5, R12, R5 ; Increment destination pointer (R5) by 
        ; <image width> (stored in R12) 
  ALUVSADD VR6,R12,VR6 ; Increment elements of sparse register by 
        ; <image width> to advance to next row 
 
  ; Loop control 
  ALUSSSUB R4, R10, R4 ; Decrement the rows counter by 1 
  BRTNEQ R4, R11, sg2in%: ; Does rows counter (R4) != 0  If TRUE, branch 
        ; and continue stage 1 inner loop 
   
  ALUVSSUB VR5,R12,VR5 ; Decrement elements of sparse register by  
        ;  238 (image width*height-length of 1 row - 2) 
        ; to return to first row, but 2 columns to the right 
  ALUVSSUB VR6,R12,VR6 ; Decrement elements of sparse register by 238 
  ALUSSSUB R2, R7, R2 ; Decrement destination address by 223 to  
        ;  return to first row, but 1 column over 
  ALUSSSUB R5, R7, R2 ; Decrement destination address by 223 to return  
        ;  to first row, but 1 column over 
  ALUSSSUB R3, R10, R3 ; Decrement the columns counter by 1 
  BRTNEQ R3, R11, sg2out%: ; Does rows counter (R3) != 0. If TRUE, branch 
        ; and continue stage 1 outer loop 
 
  ; The middle and bottom rows of this stage use the same coefs in a 
  ; different order and with a difference sparse address (because the  
  ; transform coefs wrap halfway around). The destination counters can keep 
  ; counting in the sequence started in the previous loops 
   
sg2btm: LDSI rows%:, R4  ; Initialize the rows counter  
 
  ; Load in two vector registers with sparse addresses 
  LDV spaddr4%:,VR5   ; Sparse addresses in "left side" 
  LDV spaddr4%:,VR6   ; Sparse addresses in "right side" -  
         ; start at same location 
 
  ; Compute a segment of a matrix multiply with a single row * column  
  ; Via the sparse register VR5, we ignore coefs that are zero 
  ; We compute the "top half" and "bottom half" inside the same loop. 
  ; Loop and advance, same row, next column... 
  MLACS VR5, VR1, R1, R2 ; Multiply Mem[VR5(x)] by VR1(x), shift right 
        ; by Reg[R1] positions, and accumulate 
        ; Save result in Mem[R2] 
  ALUSSADD R2, R12, R2 ; Increment destination pointer (R2) by  
        ; <image width> (stored in R12) 
  ALUVSADD VR5,R12,VR5 ; Increment elements of sparse register by 
        ; <image width> to advance to next column 
 
  ; Bottom-half intermediary results 
  MLACS VR6, VR3, R1, R5 ; Multiply Mem[VR6(x)] by VR3(x), shift right 
        ; by Reg[R1] positions, and accumulate 
        ; Save results in Mem[R5] 
  ALUSSADD R5, R12, R5 ; Increment destination pointer (R5) by  
        ; <image width> (stored in R12) 
  ALUVSADD VR6,R12,VR6 ; Increment elements of sparse register by 
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        ; <image width> to advance to next column 
 
  ; Loop control 
  ALUSSSUB R4, R10, R4 ; Decrement the rows counter by 1 
  BRTNEQ R4, R11, sg2btm%: ; Does rows counter (R4) != 0  If TRUE, branch  
        ;and continue stage 1 inner loop 
 
 
; Some empty space to create a clear boundary in the assembler output 
 DW 0%: 
 DW 0%: 
 DW 0%: 
 DW 0%: 
 DW 0%: 
 DW 0%: 
 DW 0%: 
 
 
; ** DATA ** 
; Memory module 2 
; Data only, no instructions 
ORG H#00  ; Orign = 0  
 
; Wavelet Transform Coefs - Stored in memory 
; For negative numbers, we express -x as (0-x) ("feature" of this assembler) 
;  1 and 2 are same coefs, just shifted to compute "bottom" row of region 
;  3 and 4 are same coefs, just shifted to compute "bottom" row of region 
xform1:  DW (0-8)%: 
   DW 14%: 
   DW 54%: 
   DW 31%: 
xform2:  DW 54%: 
   DW 31%: 
   DW (0-8)%: 
   DW 14%: 
xform3:  DW (0-31)%: 
   DW 54%: 
   DW (0-14)%: 
   DW (0-8)%: 
xform4:  DW (0-14)%: 
   DW (0-8)%: 
   DW (0-31)%: 
   DW 54%: 
 
 
; Memory addresses pointing to data used in sparse Mul/Accum (MLACS) 
operations. 
; These addresses are loaded into VR5 and VR6 which are used in the MLACS 
operations.  
 
; Stage 1 sparse addresses: 
 
; Generic addresses used for "most" of the multiply 
spaddr1: DW (image1+0)%: 
   DW (image1+16)%: 
   DW (image1+32)%: 
   DW (image1+48)%: 
; Specific addresses used for the final row of multiplies in each 
; half of the image (because the wavelet coefs wrap) 
spaddr2: DW (image1+0)%: 
   DW (image1+16)%: 
   DW (image1+224)%: 
   DW (image1+240)%: 
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; Stage 2 sparse addresses: 
 
; Generic addresses used for "most" of the multiply 
spaddr3: DW (image2+0)%: 
   DW (image2+1)%: 
   DW (image2+2)%: 
   DW (image2+3)%: 
    
; Specific addresses used for the final row of multiplies in each 
; half of the image (because the wavelet coefs wrap) 
spaddr4: DW (image2+0)%: 
   DW (image2+113)%: 
   DW (image2+127)%: 
   DW (image2+128)%: 
 
; Image to be transformed 
; Overwritten in second stage of the transform with final results 
; Replace these pixels with those from the Matlab wrapper program output. 
image1: <Lots of DW entries to create blank space for incoming image> 
      <Incoming image comes from Matlab wrapper program> 
      <…> 
      <…> 
 
; Some empty space to make an obvious gap when browsing memory 
; between original and transformed blocks 
empty:  DW 0%: 
   DW 0%: 
   DW 0%: 
   DW 0%: 
   DW 0%: 
   DW 0%: 
   DW 0%: 
 
; Empty space to be filled with first-stage transform results 
image2:  DW 0%: 
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Appendices 
 
 
A-3 Processor VHDL Design Files 
 
 
Files included: 

1. cpu.vhd 
2. memory.vhd 
3. reg_file_scalar.vhd 
4. reg_file_vector.vhd 
5. control_execute.vhd 
6. alu.vhd 
7. alu_mlacs.vhd 
8. pc.vhd 
9. ir.vhd 
10. loop_counter.vhd 
11. fetch.vhd 
12. simulated_input.vhd 
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