The Hadoop Distributed Filesystem: Balancing Portability and Performance

Jeffrey Shafer, Scott Rixner, Alan L. Cox – Rice University
Hadoop

- Open source **MapReduce** framework
 - Scalable way to perform data-intensive computation on a commodity cluster computer
 - Inspired by Google’s web indexing framework

- Designed for **portability**
 - Written in **Java**
 - Runs on Linux, FreeBSD, Solaris, OS/X, Windows, ...
 - Uses native filesystems to store data: ext4, XFS, UFS2, NTFS, ...

- In widespread use today
 - Amazon, Facebook, Microsoft Bing, Yahoo, ...
Hadoop

- Large clusters are built from commodity hardware
 - x86 processors, SATA disks, Ethernet
 - Yahoo cluster
 - 4000 nodes (32000 total CPU cores)
 - 4 1TB disks per node (16PB total storage)

- Hadoop software ties the cluster together
 - Scheduling – Distribute jobs across cluster
 - Storage – User-level filesystem for applications
 - Reliability – Data replication, re-spawning failed jobs
Hadoop Performance – Slow?

- Widely publicized paper in 2009 compared Hadoop performance against parallel databases for similar workloads\(^1\)

- Claim: Parallel databases are 2-3 times faster than MapReduce
 - “The MapReduce model on multi-thousand node clusters is a brute force solution”

(1) A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. Dewitt, S. Madden, and M. Stonebraker, “A Comparison of Approaches to Large-Scale Data Analysis,” SIGMOD 2009
Ongoing Debate

- Debate in paper focuses on best high-level programming style
 - MapReduce or Parallel Database?
 - Assumption: High-level differences are causing the performance gap

- Different hypothesis
 - Performance gap caused by low-level Hadoop implementation bottlenecks
 - Data-intensive computing – Is Hadoop using the storage system efficiently?

- Today’s talk:
 - Explore the low-level implementation of Hadoop
 - Analyze the interaction between Hadoop and storage
 - Fix performance bottlenecks
Outline

Hadoop Architecture
Hadoop Characterization
Hadoop Optimizations
Conclusions
Hadoop Distributed Filesystem (HDFS)

- Global filesystem used by Hadoop applications
 - Clone of Google Filesystem (GFS)\(^3\)
 - Any client can access any file anywhere in the cluster
 - Simple access semantics: Write-once, read-many

- Each (large) HDFS file composed of multiple 64MB blocks
 - Each block can be saved to any node in the cluster
 - Each block can be replicated to many nodes for redundancy

- Clients prefer to access data from local nodes (when given a choice)

Hadoop Distributed Filesystem (HDFS)

- **NameNode**
 - Stores filesystem namespace
 - Stores mapping from filename to HDFS block(s)
 - Coordinates allocation and replication
 - Single point of failure

- **DataNode**
 - Store HDFS blocks (64MB)
 - Each block is independent file in native filesystem
Hadoop Software Components

- Layering Hadoop on top of native OS produces a deep software stack
 - Hadoop applications – Access a 2TB file in HDFS...
 - Hadoop framework
 - HDFS global filesystem – Access many 64MB HDFS blocks...
 - Java virtual machine
 - Native operating system (e.g., Linux) – Access native file
 - Native filesystem (e.g., ext4) – Access many 16kB native blocks
 - Hardware (disks)

- How well does this work together?
Outline

Hadoop Architecture

Hadoop Characterization

Hadoop Optimizations

Conclusions
Search Benchmark

- Used many synthetic programs to characterize Hadoop
- Focus here on large search benchmark (i.e. distributed grep)
 - Simple to understand
 - Easy to show contributions
- Partition input data across all nodes in HDFS (10GB / node)
- Split search operation into thousands of map / reduce tasks
 - 1 task per HDFS block
 - Simplifies scheduling

- Map phase (one task per node)
 - Read input data from HDFS (from local disk)
 - Inspect each value for match
 - If match, emit key/value pair for later
 - Excessive matches will spill from RAM to scratch disk
- Reduce phase
 - Pull data from map nodes for search matches
 - Write output data to HDFS (to local disk)
Search Benchmark

• **Desired** behavior
 • Disk bound, not CPU bound
 • Map task
 • Read data from HDFS disk continuously
 • Write matching values to scratch disk periodically

• What is the **actual** behavior of this test?
 • Average HDFS disk utilization: 30%
 • Average processor utilization: 60%

• Why so low?
Problem – Periodic Access

- Map phase of search benchmark
- Scratch disk rarely used
 - Search hits are rare
- Processor utilized continuously, but HDFS disk is not!
 - Periodic access pattern
- Cause of idle HDFS disk
 - Delay in issuing and starting new tasks
- Must start new tasks frequently
 - Each task only processes a single 64MB HDFS block (simplifies scheduling)
Fix – Accelerating Task Startup

• Fast Heartbeat
 • Default: Clients send heartbeat every 3 seconds to report status + request new work
 • Change: Decrease interval to 0.3 seconds

• JVM Re-use
 • Default: Clients start new JVM for every task
 • Change: Re-use existing JVM

• Large Tasks
 • Default: Clients process 64MB of data per task
 • Change: Clients process 5GB of data per task
Fix – Accelerating Task Startup

![Graph showing execution time and HDFS disk utilization across different optimizations.]

- **Execution Time (s)**
- **HDFS Disk Utilization (%)**

Optimization:
- Default
- Fast Heartbeat
- JVM Reuse
- Large Tasks
- Combined

March 30th, 2010

ISPASS 2010
Search Benchmark

• Combine all optimizations together
• HDFS disk access is now streaming, not periodic
 • Higher CPU usage (for more bandwidth)
• Now we’re using the disk continuously and heavily, but are we using it efficiently?
Spinning Disks

- Data-intensive computing clusters use hard drives
 - Flash memory (SSDs) are too expensive for bulk storage

- How do I use a spinning disk efficiently?
 - Minimize seeks
 - Large requests (streaming)
Hidden Dependencies

• Hadoop *should* be very “friendly” to spinning disks
 • HDFS uses large blocks (64MB) that can minimize seeks
 • HDFS uses streaming access patterns

• Hidden challenge
 • HDFS relies on the native OS disk scheduler and filesystem (Linux and ext4 or XFS, FreeBSD and UFS2, etc...)

• Native OS has control over
 • Disk allocation (affects fragmentation)
 • Disk scheduling (affects sharing between multiple clients)
Problem – Disk Scheduling

- Testing concurrent writers in Hadoop
 - 1-4 writers per node
 - Concurrent readers show similar behavior
 - Results from FreeBSD 7.2 / UFS2
 - Other OS / filesystems show similar behavior

- As concurrent writers increase
 - Aggregate bandwidth drops
 - Random seeks become frequent
 - Run length plummets
 - Drive operates in inefficient region

- Big problem! Concurrent access is common
 - Replication
 - Multiple tasks over multiple CPU cores
Problem – Fragmentation

- Minimal fragmentation when only 1 writer is using disk
- Fragmentation increases with multiple writers
- Poor placement decisions
 - Filesystem is only attempting to maintain small extents (128kB)
 - Fine for general purpose, but...
 - For Hadoop, we would like massive extents! (64MB)
Fix – HDFS-Level Scheduling

- Fix both problems by making HDFS smarter
 - Present requests to OS in the order we want them processed
- Buffer pending requests in memory and schedule them (per disk) at a large 64MB granularity
 - From perspective of OS, only one client is accessing each disk
- Benefits both disk scheduling (shown) and fragmentation (not shown)
Non-Portable Optimizations

• Chose HDFS-level scheduling to maintain portability
 • What if we didn’t care about that goal?

• Reduce disk fragmentation
 • OS hints
 • `fallocate()` – Pre-allocate 64MB block in ext4 or XFS filesystem without immediately providing data. Linux-only
 • Only support certain filesystems
 • Custom configure filesystem to use large extents

• Reduce CPU overhead - Cache bypass
 • O_DIRECT to transfer data from disk to user-space buffer, bypassing cache
 • Not supported in Java (would need to use Java Native Interface)
Outline

Hadoop Architecture
Hadoop Characterization
Hadoop Optimizations
Conclusions
Hadoop Portability

• Classic notion of software portability
 • Does the application run on multiple platforms?

• Better (broader) notion of portability
 • Does the application perform well on multiple platforms?

• HDFS is (only) portable in the original sense
 • Its performance is highly dependent on the behavior of underlying software layers
 • Example: Concurrent access stresses OS disk scheduler / allocator, which was designed for general-purpose workloads
Conclusions

- Hadoop framework is complicated
 - Black-box design hides bottlenecks from user-level profiling
 - Example: Periodic hardware utilization

- Impact on current debate (Parallel Databases vs MapReduce)
 - Parallel databases are hard to tune – authors spent significant effort
 - If a similar effort had been expended on optimizing Hadoop, the performance “gap” would narrow significantly

- Hadoop architectural improvements
 - Task dispatching – increase resource utilization
 - HDFS-level scheduling – reduce disk seeks due to scheduling / fragmentation
 - Boost application performance
 - Improve node efficiency - More computation with the same hardware
Questions?