

Second Workshop on Architectures and Systems for Big Data (ASBD 2012)

June 9th, 2012

HFAA: A Generic Socket API for Hadoop File Systems

Adam Yee and **Jeffrey Shafer**University of the Pacific

Hadoop MapReduce

- Hadoop: Open source framework for data-intensive computing
 - Inspired by Google's web indexing framework
 - Uses MapReduce parallel programming model
 - Enables scalable computation on a commodity cluster computer
 - Popular and in widespread use today
 - Amazon, Facebook, Microsoft Bing, Yahoo, ...

Hadoop Software Stack

- Hadoop is an all-in-one **software framework that** ties the cluster together
 - Computation Execute Map and Reduce tasks
 - Storage User-level filesystem for applications
 - HDFS Hadoop Distributed File System
 - Scheduling Distribute jobs across cluster
 - Reliability Data replication, re-spawning failed jobs
- Designed for portability (Written in Java)

Motivating Challenge

- I already have a cluster computer
- 2. I already have a different distributed file system running (and expertise in managing it)
 - **₹** File system examples: *PVFS*, *Ceph*, *Lustre*, *GPFS*
 - Will refer to them collectively as <u>NewDFS</u> for the remainder of talk
- Hadoop (MapReduce) is only a small part of my computation workload

Hadoop needs to come to me, and not the other way around...

Motivating Challenge

- This is harder than it sounds!
- Hadoop is tightly integrated with HDFS (Hadoop Distributed File System)
 - Holds data input and computation output

How can I use Hadoop to process data stored in other distributed file systems?

Use Hadoop with NewDFS

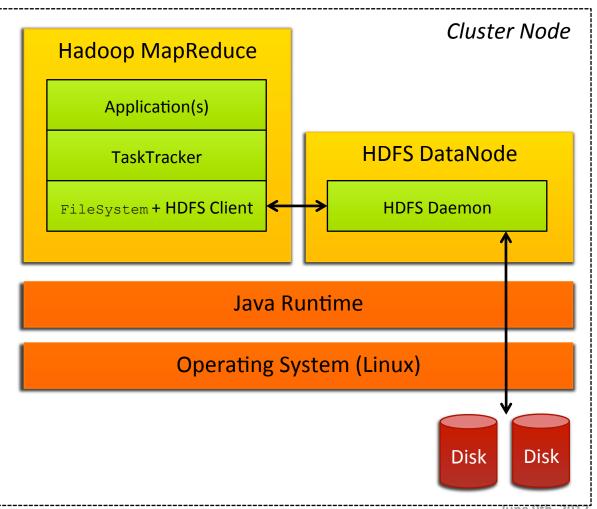
- **Method 1:** Copy the data from *NewDFS* to *HDFS*
 - Pros: Easy ©
 - Cons: Slow and wastes storage space
- Method 2: Mount NewDFS using a POSIX driver (which can be directly accessed in Hadoop)
 - Pros: Easy; Faster than making a copy first! (but still slow)
 - Cons: Lose Hadoop performance optimizations (like data locality)
- Method 3: Custom software layer integrates directly with Hadoop
 - Pros: Near-native speed
 - Cons: Highest complexity; Requires detailed knowledge of Hadoop and NewDFS architecture

Using Hadoop with NewDFS

Past Projects

- Hadoop with CloudStore
- Hadoop with Ceph
- Hadoop with GPFS
- Hadoop with Lustre
- Hadoop with PVFS
- So is this a solved problem?
 - **₹** No!

Limitations of Prior Work

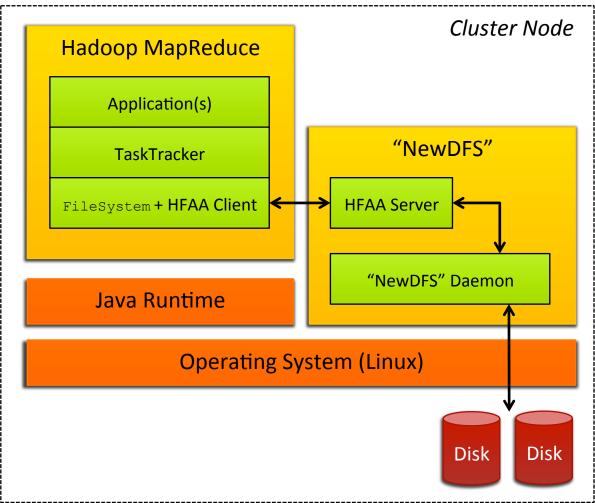

- All of these are <u>point</u> <u>solutions</u>
 - Different implementation strategies
 - Each require different software patches to Hadoop

Hadoop Filesystem Agnostic API (HFAA)

- Universal, generic interface
- Allows Hadoop to run on any file system that supports network sockets
 - Since we're targeting distributed file systems, that should include everyone
- Design moves integration responsibilities outside of Hadoop
 - Does not require user or developer knowledge of the Hadoop framework

Traditional Hadoop

- FileSystem is Hadoop's storage API class
 - **7** HDFS
 - Local disk
 - Amazon S3
- Java implementation



ASBD'12

June 9th, 2012

Hadoop + HFAA

- Integrates with Hadoop (Java)
 - Reusable for any NewDFS
- Server:
 Integrates with
 NewDFS
 (Any language)

ASBD'12

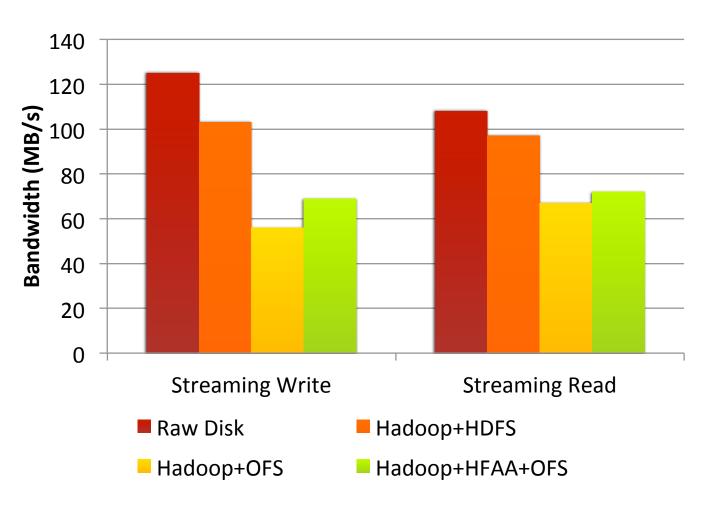
June 9th, 2012

HFAA Operations

- Fundamental Hadoop storage operations
- How do we know API is complete?
 - Every class that extends FileSystem (including HFAA) must implement these abstract methods

Function
Open
Create
Append
Rename
Delete
List Status
Make Directories
Get File State
Write
Read

Evaluation


System

- HFAA prototype written for Hadoop + PVFS
 - **7** Hadoop 0.20.204.0
 - Released Sept 5th, 2011
 - OrangeFS 2.8.4
 - Branch of PVFS
- Run on small 4-node cluster
- Streaming reads and writes

Architectures Compared

- Raw disk (outside Hadoop)
- 2. Hadoop with native HDFS
- Hadoop with OrangeFS using POSIX driver
- Hadoop with OrangeFS using HFAA

Evaluation

Next Steps

Performance Optimizations

- Expose file system locality to Hadoop scheduler
 - More important when we test on larger clusters
- Socket re-use between requests
 - Less detrimental because HDFS moves 64MB data block per request
- **₹** Tune, tune, tune!


Broader Compatibility

- Implement HFAA Server component for other popular file systems
 - Lustre?
 - Ceph?
 - Others?
- Release for Hadoop 1.0.x family

Summary

- Hadoop Filesystem Agnostic API (HFAA)
 - Generic interface supports any distributed file system
- Implementation includes two components
 - → HFAA Client Interfaces with Hadoop
 - HFAA Server Interfaces with PVFS
- Client can be re-used with all future filesystems
 - Have a new filesystem you like?
 - You only need to understand your filesystem and our simple API to link it to Hadoop
 - You don't have to be a Hadoop expert

Questions?

