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ABSTRACT
Hadoop is an open-source implementation of the MapReduce
programming model for distributed computing. Hadoop na-
tively integrates with the Hadoop Distributed File System
(HDFS), a user-level file system. In this paper, we intro-
duce the Hadoop Filesystem Agnostic API (HFAA) to allow
Hadoop to integrate with any distributed file system over
TCP sockets. With this API, HDFS can be replaced by dis-
tributed file systems such as PVFS, Ceph, Lustre, or others,
thereby allowing direct comparisons in terms of performance
and scalability. Unlike previous attempts at augmenting
Hadoop with new file systems, the socket API presented here
eliminates the need to customize Hadoop’s Java implementa-
tion, and instead moves the implementation responsibilities
to the file system itself. Thus, developers wishing to inte-
grate their new file system with Hadoop are not responsible
for understanding details of Hadoop’s internal operation.

In this paper, an initial implementation of HFAA is used
to replace HDFS with PVFS, a file system popular in high-
performance computing environments. Compared with an
alternate method of integrating with PVFS (a POSIX kernel
interface), HFAA increases write and read throughput by
23% and 7%, respectively.

1. INTRODUCTION
Hadoop is an open-source framework that implements the
MapReduce parallel programming model [3, 10]. The
Hadoop framework is composed of a MapReduce engine and
a user-level file system. For portability and ease of installa-
tion, both components are written in Java and only require
commodity hardware. In recent years, Hadoop has become
popular in industry and academic circles [8]. For example, as
of late 2010, Yahoo had over 43,000 nodes running Hadoop
for both research and production application [14].

The Hadoop Distributed File System (HDFS) manages stor-
age resources across a Hadoop cluster by providing global
access to any file [4, 16]. HDFS is implemented by two ser-
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vices: one central NameNode and many DataNodes. The
NameNode is responsible for maintaining the HDFS direc-
tory tree. Clients contact the NameNode in order to perform
common file system operations, such as open, close, rename,
and delete. The NameNode does not store HDFS data itself,
but rather maintains a mapping between HDFS file name,
a list of blocks in the file, and the DataNode(s) on which
those blocks are stored.

Although HDFS stores file data in a distributed fashion,
file metadata is stored in the centralized NameNode service.
While sufficient for small-scale clusters, this design prevents
Hadoop from scaling beyond the resources of a single Name-
Node. Prior analysis of CPU and memory requirements for
the NameNode revealed that this service is memory limited.
A large NameNode with 60GB of RAM could store at most
100 million files averaging 128MB (2 HDFS blocks) in size.
Further, with a 30% target CPU load for low-latency ser-
vice, such a NameNode could support a cluster with 100,000
readers but only 10,000 writers [17].

Beyond improved scalability (a goal also shared by the
HDFS “Federation” approach of using several independent
namespaces stored on separate NameNodes [18]), there are
other motivations for replacing HDFS. For example, alter-
nate file systems allow for write and rewrite anywhere op-
erations (increasing application flexibility) and support re-
mote DMA transfers across networks like InfiniBand (in-
creasing data transfer performance). Beyond scalability,
performance, and feature-set support, one key driver for the
use of alternate file systems is simply that these file systems
are already widely deployed. In many high-performance
computing environments, Hadoop (i.e. MapReduce) is sim-
ply the latest in a wide variety of application programming
styles to be supported, placing an emphasis on compatibility
with existing infrastructure.

Recent work has investigated replacing HDFS with other
distributed file systems. To date, Hadoop has been inte-
grated with Amazon S3 [2], CloudStore (aka KosmosFS) [5],
Ceph [12], GPFS [9], Lustre [1], and PVFS [19]. Each of
these implementations required special-purpose code for in-
tegration with Hadoop, and required the developer to be
familiar with the internal operations of both Hadoop and
the target filesystem.

This paper evaluates three different methods to replace
HDFS with other distributed file systems. The first method



uses a POSIX driver to directly mount a distributed file sys-
tem on each cluster node. This driver is typically provided
with the file system, and is intended to allow easy integra-
tion with any unmodified program or utility. When used by
Hadoop, however, storage performance suffers due to lim-
itations of the POSIX interface. For example, Hadoop is
unable to query the file system for file locality information,
and thus cannot schedule computations to minimize network
data transfer.

The second method, shim code, extends the Hadoop Java
implementation (by modifying the convenient FileSystem

abstract class that Hadoop provides) to directly access an-
other file system in user space. Such shim code is file system
specific, i.e., the PVFS shim only works with PVFS.

Due to these limitations, a third method – the Hadoop
Filesystem Agnostic API (HFAA) – is developed in order
to overcome scalability limitations of HDFS and allow the
direct integration of alternate file systems. HFAA provides a
universal, generic interface that allows Hadoop to run on any
file system that supports network sockets, particularly file
systems without a single point of failure and more general
purpose file system semantics. Its design moves integration
responsibilities outside of Hadoop, and does not require user
or developer knowledge of the Hadoop MapReduce frame-
work. Essentially, Hadoop integration is reduced to one API.

The remainder of this paper is organized as follows. First,
Section 2 describe Hadoop and HDFS, its distributed file
system. Next, Section 3 contrasts HDFS against other dis-
tributed file systems. Then, Section 4 describes the design
of the proposed HFAA architecture. Section 5 benchmarks
an implementation of HFAA with OrangeFS (a PVFS fork)
and compares its performance against other approaches. Fi-
nally, Section 6 discusses related work to our approach, and
Section 7 concludes this paper.

2. HADOOP ARCHITECTURE
The Hadoop framework is implemented as two key ser-
vices: the Hadoop MapReduce engine and the Hadoop Dis-
tributed File System (HDFS). Although they are typically
used together, each can be operated independently if de-
sired. For example, users of Amazon’s Elastic MapReduce
service use the Hadoop MapReduce engine in conjunction
with Amazon’s own Simple Storage Service (S3) [2].

In Hadoop, the MapReduce engine is implemented by two
software services, the JobTracker and TaskTracker. The cen-
tralized JobTracker runs on a dedicated cluster node and is
responsible for splitting the input data into pieces for pro-
cessing by independent map and reduce tasks (by coordinat-
ing with the user-level file system), scheduling each task on
a cluster node for execution, monitoring execution progress
by receiving heartbeat signals from cluster nodes, and re-
covering from failures by re-running tasks. On each cluster
node, an instance of the TaskTracker service accepts map
and reduce tasks from the JobTracker, executes the tasks,
and reports the status back to the JobTracker.

HDFS provides global access to any file in a shared names-
pace across the Hadoop cluster [4, 16]. HDFS is imple-
mented by two services: the NameNode and DataNode.

Figure 1: Hadoop Cluster Node (non-master)

The NameNode is responsible for maintaining the HDFS di-
rectory tree, and is a centralized service in the cluster op-
erating on a single node. Clients contact the NameNode
in order to perform common file system operations, such as
open, close, rename, and delete. The NameNode does not
store HDFS data itself, but rather maintains a mapping be-
tween HDFS file name, a list of blocks in the file, and the
DataNode(s) on which those blocks are stored.

In addition to a centralized NameNode, all remaining cluster
nodes provide the DataNode service. Each DataNode stores
HDFS blocks (64MB chunks of a single logical file) on behalf
of local or remote clients. Each block is saved as a separate
file in the node’s local file system, which uses a native file
system like ext4. Blocks are created or destroyed on Data-
Nodes at the request of the NameNode, which validates and
processes requests from clients. Although the NameNode
manages the namespace, clients communicate directly with
DataNodes to read or write data at the HDFS block level.

Figure 1 shows the architecture of a standard Hadoop clus-
ter node used for both computation and storage. The Map-
Reduce engine (running inside a Java virtual machine) ex-
ecutes the user application. When the application reads
or writes data, requests are passed through the Hadoop
org.apache.hadoop.fs.FileSystem class, which provides a
standard interface for distributed file systems, including the
default HDFS. An HDFS client is then responsible for re-
trieving data from the distributed file system by contacting
a DataNode with the desired block. In the common case,
the DataNode is running on the same node, so no external
network traffic is necessary. The DataNode, also running
inside a Java virtual machine, accesses the data stored on
local disk using normal file I/O functions.

3. SCALABLE FILE SYSTEMS
There are many distributed file systems designed to scale
across a large cluster computer. Some are open source, in-
cluding Ceph [20], Lustre [6], and PVFS [7], while others are
proprietary, including GPFS [15], the Google filesystem [11,
13], and PanFS [21].



Function HDFS Lustre Ceph PVFS

Namespace Service Centralized Centralized Distributed Distributed
Fault Tolerance File replication and

auto-recovery
Hardware dependant
(RAID)

File replication and
auto-recovery

Hardware dependant
(RAID)

Write Semantics Write-once (file ap-
pend provisionally
supported)

Write and re-write anywhere with most POSIX semantics

Accessibility Custom Hadoop API
or kernel driver (non-
POSIX)

Custom (Lustre/Ceph/PVFS) API or kernel driver providing
POSIX-like functionality

Deployment Model Nodes used for com-
putation and storage

Separate nodes for computation or storage (dedicated services)

Table 1: Comparison of HDFS and other Distributed File Systems

Table 1 provides a comparison between HDFS and other
open-source distributed file systems including Ceph, Lus-
tre, and PVFS. Key differences include the handling of file
metadata in a centralized or distributed fashion, the im-
plementation of fault tolerance by either hardware RAID
(below the level of the file system) or software-based repli-
cation, and the imposition of non-POSIX restrictions such
as write-once (and only once) files. Broadly, HDFS was
designed specifically to support one kind of programming
model – MapReduce – and thus features a simplified de-
sign optimized heavily towards streaming accesses. In con-
trast, other parallel distributed file systems were designed
for high-performance computing environments where multi-
ple programming models – such as MPI, PVM, and OpenMP
– are commonplace, and thus must support a broader range
of features.

4. HFAA API
The Hadoop Filesystem Agnostic API (HFAA) provides a
simple way for Hadoop to interface with file systems other
than HDFS. It is targeted at developers of these alternate
file systems, i.e., those who have an understanding of their
distributed file system, but are not experts in the internal
operation of Hadoop. HFAA eliminates the need for cus-
tom extensions to Hadoop’s Java implementation, and al-
lows communication with any file system over TCP sockets.
The overall architecture of HFAA is described here. For the
purpose of design discussion, distributed and parallel file sys-
tems other than the native Hadoop Distributed File System
(HDFS) (such as PVFS, Ceph, or Lustre) will be referred to
by the generic name NewDFS.

This API is designed for deployment in the typical Hadoop
environment where each cluster node is responsible for both
computation (via Hadoop MapReduce) and storage (via
HDFS). When HDFS is replaced with whatever “NewDFS”
is desired, each node will still be responsible for both com-
putation and storage. The HDFS daemon will be disabled,
and a NewDFS daemon configured in its place.

To enable Hadoop MapReduce to communicate with the
NewDFS daemon, the HFAA architecture adds two soft-
ware components to the system, an HFAA client and an
HFAA server, as shown in Figure 2. The HFAA client in-
tegrates with the standard Hadoop MapReduce framework
and intercepts read/write requests that would ordinarily go
to HDFS. The client then forwards the requests via network

Figure 2: HFAA Cluster Node (non-master)

sockets to the HFAA server, which typically will be run-
ning on the same node, but could be remotely located. The
HFAA server is responsible for interfacing with NewDFS. It
receives network requests from the HFAA client to perform
file system operations (e.g., create, open, delete, etc.) and
responds with the data/metadata results from NewDFS.

The HFAA client is written in Java and integrated into
the Hadoop framework. The client can be re-used with
any NewDFS. In contrast, the HFAA server is written in
whatever language NewDFS is implemented in, and must
be re-written for each new file system that is integrated.
We envision this component being provided by developers
of NewDFS, who have no need for detailed knowledge of
Hadoop’s inner workings. Details of the design and opera-
tion of the HFAA client and server are described next.

4.1 Client: Integration with Hadoop
The Hadoop implementation in Java includes an abstract
class called org.apache.hadoop.fs.FileSystem. Several
file systems extend and implement this abstract class, in-
cluding HDFS (the default file system), Amazon S3, and
the Kosmos File System. The HFAA client integrates with
Hadoop by implementing this FileSystem class, essentially
replacing the HDFS interface with equivalent functionality
to interface with any NewDFS over TCP sockets.



Function Description

open Open a file to read.
create Create a file to write.
append Append data to an existing file.
rename Change a file name and/or move the file

to a different directory.
delete Delete a file/directory and its contents.
listStatus List the files within a directory.
mkdirs Make a directory for a given file path.

Non existent parent directories must
also be created.

getFileStatus Fetch metadata (size, block location,
replication, owner, ...) for a given file
or directory.

write Write functionality is implemented
within a new OutputStream class.

read Read functionality is implemented
within a new InputStream class.

Table 2: HFAA Operations

The key functionality that HFAA implements includes is
shown in Table 2. To make the protocol generic, sim-
ple command request and response type codes and their
data/metadata are exchanged between the HFAA client and
HFAA server in string format. Parsing requests and re-
sponses is flexible and easy to work with since most pro-
gramming languages offer libraries for string manipulation.
For full specifications on the HFAA protocol, refer to [22].

4.2 Server: Integration with NewDFS
The HFAA server interfaces with NewDFS. It can receive
network requests from the HFAA client to perform file sys-
tem operations (e.g., create, open, delete, etc.) and responds
with the proper data/metadata obtained from NewDFS.
In this design, the interface between the HFAA client and
HFAA server are standardized, but the interface between the
HFAA server and the NewDFS daemon are left up to the im-
plementer. Thus, the HFAA server could be integrated into
the NewDFS daemon itself, or left as a stand-alone program.

The basic structure of the HFAA server, regardless of
whether it is standalone or integrated with the NewDFS
daemon, is as follows. The HFAA server listens for incoming
TCP requests in a tight loop and passes each request to an
independent thread or process for completion. The HFAA
server must be able to respond to multiple requests concur-
rently because a typical Hadoop node is processing several
MapReduce tasks in parallel, and because each task has at
least one data file and several metadata files (tracking task
completion status) open at any given time. In each process
are a set of request handlers for each Hadoop API function
(e.g., getFileStatus(), listStatus()). The request handlers
service the request until completion, and then exit.

5. EVALUATION
The HFAA client and server architecture described in Sec-
tion 4 was implemented and tested with Hadoop 0.20.204.0
and OrangeFS 2.8.4, a distributed file system that is a
branch of PVFS. The HFAA client was written in Java, be-
cause it is compiled into the Hadoop framework. In con-

trast, the HFAA server was written in C to take advantage
of existing PVFS code. For implementation convenience,
the HFAA server was not directly integrated into the PVFS
storage daemon. Rather, it was implemented as a standalone
process similar in style to the existing admintools provided
with the new file system. These utilities offer POSIX-style
commands (e.g., ls, touch) for PVFS maintenance and
administration.

Four homogeneous servers were used for benchmarking.
Each server consists of an Intel Xeon X3430 processor, 4GB
of RAM, and a 500GB SATA hard drive. A 100GB partition
on the outer edge of the disk (i.e., the fastest region) was
allocated to store HDFS or PVFS data. Using only a small
region of the disk allows the access bandwidth difference be-
tween the fastest and slowest sectors due to physical disk
location to be minimized in these experiments to under 8%.
Each server was configured with the Ubuntu 10.10 Linux
distribution and a software stack (Hadoop + distributed file
system) that varies by experiment. All nodes were connected
by a gigabit Ethernet switch on a private network.

Table 3 describes the three different cluster software config-
urations used for experiments: Hadoop with HDFS, Hadoop
with PVFS, and Hadoop with PVFS using HFAA. For con-
sistency across experiments, in all configurations a single
“master”server was used for job scheduling, and three“slave”
servers were used for computation and to store file data. The
location of file metadata varied between experiments.

The first configuration, labeled Hadoop+HDFS, is the stan-
dard Hadoop architecture, where the master node runs
the centralized JobTracker and NameNode services (for job
management and file system namespace), and each slave
node runs its own instance of the TaskTracker and Data-
Node services (for computation and distributed storage).

In the second configuration, labeled Hadoop+PVFS, HDFS
has been removed and replaced with PVFS. A POSIX client
driver, provided with PVFS, is used to mount the dis-
tributed file system on each node, and Hadoop is config-
ured to use this “local” file system directly via its RawLo-

calFileSystem interface. In this configuration, Hadoop is
limited by the POSIX driver interface, and is unable to ob-
tain locality information from the underlying file system.

The PVFS architecture is designed with 3 components:
metadata servers (storing metadata), I/O servers (storing
data), and clients. For consistency with the HDFS configu-
ration, the master node in the Hadoop+PVFS configuration
is used only to run the metadata server, while all other slave
nodes runs both a metadata server and an I/O server. Thus,
only the 3 slaves store file data, as in the HDFS configura-
tion. Unlike HDFS, however, the Metadata Server(s) (the
NameNode equivalent) is distributed over the entire cluster.

Finally, in the third Hadoop+HFAA+PVFS configuration,
the interface between Hadoop and PVFS is changed. The
POSIX driver and PVFS client is removed, and replaced by
the new HFAA client and server architecture discussed in
Section 4. As in the previous configuration, each node runs
a Metadata Server, but only the slave nodes run an I/O
server, in order to emulate the original HDFS architecture.



Node Hadoop+HDFS Hadoop+PVFS Hadoop+HFAA+PVFS

Master (1)

H: JobTracker H: JobTracker H: JobTracker
D: NameNode (metadata) P: POSIX Driver A: HFAA Client

P: Client A: HFAA Server
P: Metadata Server (metadata) P: Metadata Server (metadata)

Slaves (3)

H: TaskTracker H: TaskTracker H: TaskTracker
D: DataNode (data) P: POSIX Driver A: HFAA Client

P: Client A: HFAA Server
P: Metadata Server (metadata) P: Metadata Server (metadata)
P: I/O Server (data) P: I/O Server (data)

Table 3: Cluster Software Configuration (H=Hadoop MapReduce, D=HDFS, P=PVFS, A=HFAA)

Figure 3: File Access Bandwidth (Read and Write)

Each of the three cluster configurations are benchmarked
with a MapReduce application called TestDFSIO, which is
provided with the Hadoop framework. This benchmark per-
forms parallel streaming read or streaming write operations
to many files across the cluster. Each individual file is read
(or written) by a single TestDFSIO map task, and each clus-
ter slave can run several map tasks concurrently. As each
map task completes across the cluster, a single reduce task
aggregates and reports performance statistics. In these ex-
periments, the TaskTracker on each slave node runs a single
map task with TestDFSIO either reading or writing a single
5GB file in the global file system, for a total of 15GB of data
accessed in aggregate across the cluster. Note that because
replication is not natively supported in PVFS, replication
was disabled in all configurations.

Figure 3 shows the TestDFSIO results for the three clus-
ter configurations for both reading and writing workloads.
These results are compared to the performance of the raw
disk outside of the Hadoop environment entirely, which
was measured via the dd utility configured to do stream-
ing accesses. The standard Hadoop+HDFS configuration
achieved 82% of the average write throughput and 87%
of the average read throughput of the raw disk. In con-
trast, the Hadoop+PVFS configuration only achieved 46%
of the average write throughput and 60% of the average read
throughput, compared to the raw disk bandwidth. Finally
the Hadoop+HFAA+PVFS configuration achieved 55% of
the average write throughput and 64% of the average read
throughput compared to the original raw disk bandwidth,
showing how HFAA can preserve the original file system

bandwidth and make it accessible to Hadoop.

The results demonstrate the functionality of the HFAA in-
terface. Although using this API with PVFS did not match
or surpass the I/O rates of HDFS, 67% of HDFS write
throughput and 74% of HDFS read throughput is main-
tained. Integrating PVFS with HFAA achieves a 23% gain
on write throughput and a 7% gain on read throughput
compared to using PVFS as a local file system through the
POSIX kernel interface.

6. RELATEDWORK
Integrating the MapReduce functionality of Hadoop with file
systems other than HDFS has been of significant interest in
recent years. This integration typically follows one of two
possible approaches: extending Hadoop’s built-in FileSys-

tem abstract class with shim code to support the desired
distributed file system, or using a POSIX driver to expose
the distributed file system to the underlying OS, and then
directly accessing this from inside Hadoop.

Examples of alternate distributed file systems that have been
successfully used with Hadoop MapReduce include Amazon
S3 [2], Ceph [12], CloudStore/KosmosFS [5], GPFS [9],
PVFS [19], and Lustre [1]. Many of these file systems can
be used with either the POSIX driver approach or the shim
code approach for higher performance. The key difference
between all of these approaches and the approach chosen
for HFAA is that HFAA was designed to keep the Hadoop-
facing implementation constant, and push a simplified set of
implementation responsibilities to the distributed file sys-
tem. In contrast, all of the prior integration projects each
involve their own separate, unique set of modifications and
patches to the Hadoop code base.

7. CONCLUSIONS
The Hadoop Filesystem Agnostic API extends Hadoop with
a simple communication protocol, allowing it to integrate
with any file system which supports TCP sockets. This new
API eliminates the need for customizing Hadoop’s Java im-
plementation, and instead moves future implementation re-
sponsibilities to the file system itself. Thus, developers wish-
ing to integrate their new file system with Hadoop are not
responsible for understanding details of Hadoop’s internal
operation.

By providing a file system agnostic API, future work can
directly explore the performance tradeoffs of using the Map-



Reduce programming model with file systems supporting
write-anywhere operations, distributed metadata servers,
and other advances. Further, HFAA allows Hadoop to inte-
grate more easily into existing high-performance computing
environments, where alternate distributed file systems are
already present.

For details on the HFAA design and protocol, refer to [22].
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