
Concurrent Direct Network Access for Virtual Machine Monitors

Paul Willmann† Jeffrey Shafer† David Carr† Aravind Menon‡

Scott Rixner† Alan L. Cox† Willy Zwaenepoel‡

†Rice University
Houston, TX

{willmann,shafer,dcarr,rixner,alc}@rice.edu

‡EPFL
Lausanne, Switzerland

{aravind.menon,willy.zwaenepoel}@epfl.ch

Abstract

This paper presents hardware and software mechanisms
to enable concurrent direct network access (CDNA) by op-
erating systems running within a virtual machine monitor.
In a conventional virtual machine monitor, each operating
system running within a virtual machine must access the
network through a software-virtualized network interface.
These virtual network interfaces are multiplexed in software
onto a physical network interface, incurring significant per-
formance overheads. The CDNA architecture improves net-
working efficiency and performance by dividing the tasks of
traffic multiplexing, interrupt delivery, and memory protec-
tion between hardware and software in a novel way. The
virtual machine monitor delivers interrupts and provides
protection between virtual machines, while the network in-
terface performs multiplexing of the network data. In effect,
the CDNA architecture provides the abstraction that each
virtual machine is connected directly to its own network in-
terface. Through the use of CDNA, many of the bottlenecks
imposed by software multiplexing can be eliminated with-
out sacrificing protection, producing substantial efficiency
improvements.

1 Introduction

In many organizations, the economics of supporting
a growing number of Internet-based services has created
a demand for server consolidation. Consequently, there
has been a resurgence of interest in machine virtualiza-
tion [1, 2, 4, 7, 9, 10, 11, 19, 22]. A virtual machine moni-
tor (VMM) enables multiple virtual machines, each encap-
sulating one or more services, to share the same physical

This work was supported in part by the Texas Advanced Technology Pro-
gram under Grant No. 003604-0078-2003, by the National Science Foun-
dation under Grant No. CCF-0546140, by a grant from the SwissNational
Science Foundation, and by gifts from Advanced Micro Devices, Hewlett-
Packard, and Xilinx.

machine safely and fairly. In principle, general-purpose op-
erating systems, such as Unix and Windows, offer the same
capability for multiple services to share the same physical
machine. However, VMMs provide additional advantages.
For example, VMMs allow services implemented in differ-
ent or customized environments, including different operat-
ing systems, to share the same physical machine.

Modern VMMs for commodity hardware, such as
VMWare [1, 7] and Xen [4], virtualize processor, memory,
and I/O devices in software. This enables these VMMs to
support a variety of hardware. In an attempt to decrease
the software overhead of virtualization, both AMD and Intel
are introducing hardware support for virtualization [2, 10].
Specifically, their hardware support for processor virtual-
ization is currently available, and their hardware support
for memory virtualization is imminent. As these hardware
mechanisms mature, they should reduce the overhead of vir-
tualization, improving the efficiency of VMMs.

Despite the renewed interest in system virtualization,
there is still no clear solution to improve the efficiency of
I/O virtualization. To support networking, a VMM must
present each virtual machine with a virtual network inter-
face that is multiplexed in software onto a physical net-
work interface card (NIC). The overhead of this software-
based network virtualization severely limits network perfor-
mance [12, 13, 19]. For example, a Linux kernel running
within a virtual machine on Xen is only able to achieve
about 30% of the network throughput that the same kernel
can achieve running directly on the physical machine.

This paper proposes and evaluates concurrent direct net-
work access (CDNA), a new I/O virtualization technique
combining both software and hardware components that
significantly reduces the overhead of network virtualization
in VMMs. The CDNA network virtualization architecture
provides virtual machines running on a VMM safe direct
access to the network interface. With CDNA, each virtual
machine is allocated a uniquecontexton the network inter-
face and communicates directly with the network interface
through that context. In this manner, the virtual machines



that run on the VMM operate as if each has access to its
own dedicated network interface.

Using CDNA, a single virtual machine running Linux
can transmit at a rate of 1867 Mb/s with 51% idle time and
receive at a rate of 1874 Mb/s with 41% idle time. In con-
trast, at 97% CPU utilization, Xen is only able to achieve
1602 Mb/s for transmit and 1112 Mb/s for receive. Further-
more, with 24 virtual machines, CDNA can still transmit
and receive at a rate of over 1860 Mb/s, but with no idle
time. In contrast, Xen is only able to transmit at a rate of
891 Mb/s and receive at a rate of 558 Mb/s with 24 virtual
machines.

The CDNA network virtualization architecture achieves
this dramatic increase in network efficiency by dividing the
tasks of traffic multiplexing, interrupt delivery, and memory
protection among hardware and software in a novel way.
Traffic multiplexing is performed directly on the network
interface, whereas interrupt delivery and memory protec-
tion are performed by the VMM with support from the net-
work interface. This division of tasks into hardware and
software components simplifies the overall software archi-
tecture, minimizes the hardware additions to the network in-
terface, and addresses the network performance bottlenecks
of Xen.

The remainder of this paper proceeds as follows. The
next section discusses networking in the Xen VMM in more
detail. Section 3 describes how CDNA manages traffic mul-
tiplexing, interrupt delivery, and memory protection in soft-
ware and hardware to provide concurrent access to the NIC.
Section 4 then describes the custom hardware NIC that fa-
cilitates concurrent direct network access on a single de-
vice. Section 5 presents the experimental methodology and
results. Finally, Section 6 discusses related work and Sec-
tion 7 concludes the paper.

2 Networking in Xen

2.1 Hypervisor and Driver Domain Operation

A VMM allows multiple guest operating systems, each
running in a virtual machine, to share a single physical ma-
chine safely and fairly. It provides isolation between these
guest operating systems and manages their access to hard-
ware resources. Xen is an open source VMM that supports
paravirtualization, which requires modifications to the guest
operating system [4]. By modifying the guest operating sys-
tems to interact with the VMM, the complexity of the VMM
can be reduced and overall system performance improved.

Xen performs three key functions in order to provide vir-
tual machine environments. First, Xen allocates the physi-
cal resources of the machine to the guest operating systems
and isolates them from each other. Second, Xen receives all

Driver Domain
 Guest


Domain 1


Guest


Domain 2


NIC
 CPU / Memory / Disk / Other Devices


NIC Driver


Packe


t Data


Front-End


Driver


Front-End


Driver


Ethernet


Bridge


Back-End Drivers


Interrupts


Driver


Control


Hypervisor


Control


Control + Data


Hypervisor


Page


Flipping


Packet


Data


Interrupt Dispatch


Virtual Interrupts


Figure 1. Xen virtual machine environment.

interrupts in the system and passes them on to the guest op-
erating systems, as appropriate. Finally, all I/O operations
go through Xen in order to ensure fair and non-overlapping
access to I/O devices by the guests.

Figure 1 shows the organization of the Xen VMM. Xen
consists of two elements: the hypervisor and the driver do-
main. The hypervisor provides an abstraction layer between
the virtual machines, called guest domains, and the actual
hardware, enabling each guest operating system to execute
as if it were the only operating system on the machine.
However, the guest operating systems cannot directly com-
municate with the physical I/O devices. Exclusive access to
the physical devices is given by the hypervisor to the driver
domain, a privileged virtual machine. Each guest operating
system is then given avirtual I/O devicethat is controlled by
a paravirtualized driver, called a front-end driver. In order to
access a physical device, such as the network interface card
(NIC), the guest’s front-end driver communicates with the
corresponding back-end driver in the driver domain. The
driver domain then multiplexes the data streams for each
guest onto the physical device. The driver domain runs
a modified version of Linux that uses native Linux device
drivers to manage I/O devices.

As the figure shows, in order to provide network access
to the guest domains, the driver domain includes a soft-
ware Ethernet bridge that interconnects the physical NIC
and all of the virtual network interfaces. When a packet is
transmitted by a guest, it is first transferred to the back-end
driver in the driver domain using a page remapping oper-
ation. Within the driver domain, the packet is then routed
through the Ethernet bridge to the physical device driver.
The device driver enqueues the packet for transmission on
the network interface as if it were generated normally by the
operating system within the driver domain. When a packet
is received, the network interface generates an interrupt that
is captured by the hypervisor and routed to the network in-
terface’s device driver in the driver domain as a virtual in-
terrupt. The network interface’s device driver transfers the



packet to the Ethernet bridge, which routes the packet to
the appropriate back-end driver. The back-end driver then
transfers the packet to the front-end driver in the guest do-
main using a page remapping operation. Once the packet is
transferred, the back-end driver requests that the hypervisor
send a virtual interrupt to the guest notifying it of the new
packet. Upon receiving the virtual interrupt, the front-end
driver delivers the packet to the guest operating system’s
network stack, as if it had come directly from the physical
device.

2.2 Device Driver Operation

The driver domain in Xen is able to use unmodified
Linux device drivers to access the network interface. Thus,
all interactions between the device driver and the NIC are
as they would be in an unvirtualized system. These inter-
actions include programmed I/O (PIO) operations from the
driver to the NIC, direct memory access (DMA) transfers
by the NIC to read or write host memory, and physical in-
terrupts from the NIC to invoke the device driver.

The device driver directs the NIC to send packets from
buffers in host memory and to place received packets into
preallocated buffers in host memory. The NIC accesses
these buffers using DMA read and write operations. In or-
der for the NIC to know where to store or retrieve data from
the host, the device driver within the host operating system
generates DMA descriptors for use by the NIC. These de-
scriptors indicate the buffer’s length and physical address
on the host. The device driver notifies the NIC via PIO that
new descriptors are available, which causes the NIC to re-
trieve them via DMA transfers. Once the NIC reads a DMA
descriptor, it can either read from or write to the associated
buffer, depending on whether the descriptor is being used
by the driver to transmit or receive packets.

Device drivers organize DMA descriptors in a series of
rings that are managed using a producer/consumer protocol.
As they are updated, the producer and consumer pointers
wrap around the rings to create a continuous circular buffer.
There are separate rings of DMA descriptors for transmit
and receive operations. Transmit DMA descriptors point to
host buffers that will be transmitted by the NIC, whereas
receive DMA descriptors point to host buffers that the OS
wants the NIC to use as it receives packets. When the host
driver wants to notify the NIC of the availability of a new
DMA descriptor (and hence a new packet to be transmitted
or a new buffer to be posted for packet reception), the driver
first creates the new DMA descriptor in the next-available
slot in the driver’s descriptor ring and then increments the
producer index on the NIC to reflect that a new descriptor
is available. The driver updates the NIC’s producer index
by writing the value via PIO into a specific location, called
amailbox, within the device’s PCI memory-mapped region.

System Transmit (Mb/s) Receive (Mb/s)
Native Linux 5126 3629
Xen Guest 1602 1112

Table 1. Transmit and receive performance
for native Linux 2.6.16.29 and paravirtualized
Linux 2.6.16.29 as a guest OS within Xen 3.

The network interface monitors these mailboxes for such
writes from the host. When a mailbox update is detected,
the NIC reads the new producer value from the mailbox,
performs a DMA read of the descriptor indicated by the in-
dex, and then is ready to use the DMA descriptor. After the
NIC consumes a descriptor from a ring, the NIC updates its
consumer index, transfers this consumer index to a location
in host memory via DMA, and raises a physical interrupt to
notify the host that state has changed.

In an unvirtualized operating system, the network inter-
face trusts that the device driver gives it valid DMA descrip-
tors. Similarly, the device driver trusts that the NIC will use
the DMA descriptors correctly. If either entity violates this
trust, physical memory can be corrupted. Xen also requires
this trust relationship between the device driver in the driver
domain and the NIC.

2.3 Performance

Despite the optimizations within the paravirtualized
drivers to support communication between the guest and
driver domains (such as using page remapping rather than
copying to transfer packets), Xen introduces significant pro-
cessing and communication overheads into the network
transmit and receive paths. Table 1 shows the network-
ing performance of both native Linux 2.6.16.29 and para-
virtualized Linux 2.6.16.29 as a guest operating system
within Xen 3 Unstable1 on a modern Opteron-based sys-
tem with six Intel Gigabit Ethernet NICs. In both configu-
rations, checksum offloading, scatter/gather I/O, and TCP
Segmentation Offloading (TSO) were enabled. Support
for TSO was recently added to the unstable development
branch of Xen and is not currently available in the Xen 3
release. As the table shows, a guest domain within Xen is
only able to achieve about 30% of the performance of native
Linux. This performance gap strongly motivates the need
for networking performance improvements within Xen.

3 Concurrent Direct Network Access

With CDNA, the network interface and the hypervisor
collaborate to provide the abstraction that each guest oper-
ating system is connected directly to its own network in-

1Changeset 12053:874cc0ff214d from 11/1/2006.



terface. This eliminates many of the overheads of network
virtualization in Xen. Figure 2 shows the CDNA architec-
ture. The network interface must support multiplecontexts
in hardware. Each context acts as if it is an independent
physical network interface and can be controlled by a sepa-
rate device driver instance. Instead of assigning ownership
of the entire network interface to the driver domain, the hy-
pervisor treats each context as if it were a physical NIC and
assigns ownership of contexts to guest operating systems.
Notice the absence of the driver domain from the figure:
each guest can transmit and receive network traffic using its
own private context without any interaction with other guest
operating systems or the driver domain. The driver domain,
however, is still present to perform control functions and
allow access to other I/O devices. Furthermore, the hyper-
visor is still involved in networking, as it must guarantee
memory protection and deliver virtual interrupts to the guest
operating systems.

With CDNA, the communication overheads between the
guest and driver domains and the software multiplexing
overheads within the driver domain are eliminated entirely.
However, the network interface now must multiplex the
traffic across all of its active contexts, and the hypervisor
must provide protection across the contexts. The following
sections describe how CDNA performs traffic multiplexing,
interrupt delivery, and DMA memory protection.

3.1 Multiplexing Network Traffic

CDNA eliminates the software multiplexing overheads
within the driver domain by multiplexing network traffic
on the NIC. The network interface must be able to identify
the source or target guest operating system for all network
traffic. The network interface accomplishes this by provid-
ing independent hardware contexts and associating a unique
Ethernet MAC address with each context. The hypervisor
assigns a unique hardware context on the NIC to each guest
operating system. The device driver within the guest oper-
ating system then interacts with its context exactly as if the
context were an independent physical network interface. As
described in Section 2.2, these interactions consist of creat-
ing DMA descriptors and updating a mailbox on the NIC
via PIO.

Each context on the network interface therefore must in-
clude a unique set of mailboxes. This isolates the activity
of each guest operating system, so that the NIC can distin-
guish between the different guests. The hypervisor assigns
a context to a guest simply by mapping the I/O locations for
that context’s mailboxes into the guest’s address space. The
hypervisor also notifies the NIC that the context has been
allocated and is active. As the hypervisor only maps each
context into a single guest’s address space, a guest cannot
accidentally or intentionally access any context on the NIC

Guest


Domain 1


Guest


Domain ...


Guest


Domain 2


CDNA NIC
CPU / Memory / Disk


Packet

Data


Interrupts


Driver


Control


Virtual Interrupts


NIC Driver


NIC Driver


NIC Driver


Control


Interrupt


Dispatch
Hypervisor


Figure 2. CDNA architecture in Xen.

other than its own. When necessary, the hypervisor can also
revoke a context at any time by notifying the NIC, which
will shut down all pending operations associated with the
indicated context.

To multiplex transmit network traffic, the NIC simply
services all of the hardware contexts fairly and interleaves
the network traffic for each guest. When network pack-
ets are received by the NIC, it uses the Ethernet MAC ad-
dress to demultiplex the traffic, and transfers each packet to
the appropriate guest using available DMA descriptors from
that guest’s context.

3.2 Interrupt Delivery

In addition to isolating the guest operating systems and
multiplexing network traffic, the hardware contexts on the
NIC must also be able to interrupt their respective guests.
As the NIC carries out network requests on behalf of any
particular context, the CDNA NIC updates that context’s
consumer pointers for the DMA descriptor rings, as de-
scribed in Section 2.2. Normally, the NIC would then inter-
rupt the guest to notify it that the context state has changed.
However, in Xen all physical interrupts are handled by the
hypervisor. Therefore, the NIC cannot physically interrupt
the guest operating systems directly. Even if it were possi-
ble to interrupt the guests directly, that could create a much
higher interrupt load on the system, which would decrease
the performance benefits of CDNA.

Under CDNA, the NIC keeps track of which contexts
have been updated since the last physical interrupt, encod-
ing this set of contexts in an interrupt bit vector. The NIC
transfers an interrupt bit vector into the hypervisor’s mem-
ory space using DMA. The interrupt bit vectors are stored
in a circular buffer using a producer/consumer protocol to
ensure that they are processed by the host before being over-
written by the NIC. After an interrupt bit vector is trans-
ferred, the NIC raises a physical interrupt, which invokes
the hypervisor’s interrupt service routine. The hypervisor
then decodes all of the pending interrupt bit vectors and
schedules virtual interrupts to each of the guest operating
systems that have pending updates from the NIC. When the



guest operating systems are next scheduled by the hypervi-
sor, the CDNA network interface driver within the guest re-
ceives these virtual interrupts as if they were actual physical
interrupts from the hardware. At that time, the driver exam-
ines the updates from the NIC and determines what further
action, such as processing received packets, is required.

3.3 DMA Memory Protection

In the x86 architecture, network interfaces and other I/O
devices use physical addresses when reading or writing host
system memory. The device driver in the host operating
system is responsible for doing virtual-to-physical address
translation for the device. The physical addresses are pro-
vided to the network interface through read and write DMA
descriptors as discussed in Section 2.2. By exposing phys-
ical addresses to the network interface, the DMA engine
on the NIC can be co-opted into compromising system se-
curity by a buggy or malicious driver. There are two key
I/O protection violations that are possible in the x86 archi-
tecture. First, the device driver could instruct the NIC to
transmit packets containing a payload from physical mem-
ory that does not contain packets generated by the operating
system, thereby creating a security hole. Second, the device
driver could instruct the NIC to receive packets into physi-
cal memory that was not designated as an available receive
buffer, possibly corrupting memory that is in use.

In the conventional Xen network architecture discussed
in Section 2.2, Xen trusts the device driver in the driver do-
main to only use the physical addresses of network buffers
in the driver domain’s address space when passing DMA
descriptors to the network interface. This ensures that all
network traffic will be transferred to/from network buffers
within the driver domain. Since guest domains do not inter-
act with the NIC, they cannot initiate DMA operations, so
they are prevented from causing either of the I/O protection
violations in the x86 architecture.

Though the Xen I/O architecture guarantees that un-
trusted guest domains cannot induce memory protection vi-
olations, any domain that is granted access to an I/O de-
vice by the hypervisor can potentially direct the device to
perform DMA operations that access memory belonging to
other guests, or even the hypervisor. The Xen architecture
does not fundamentally solve this security defect but instead
limits the scope of the problem to a single, trusted driver
domain [9]. Therefore, as the driver domain is trusted, it is
unlikely to intentionally violate I/O memory protection, but
a buggy driver within the driver domain could do so unin-
tentionally.

This solution is insufficient for the CDNA architecture.
In a CDNA system, device drivers in the guest domains
have direct access to the network interface and are able to
pass DMA descriptors with physical addresses to the de-

vice. Thus, the untrusted guests could read or write memory
in any other domain through the NIC, unless additional se-
curity features are added. To maintain isolation between
guests, the CDNA architecture validates and protects all
DMA descriptors and ensures that a guest maintains own-
ership of physical pages that are sources or targets of out-
standing DMA accesses. Although the hypervisor and the
network interface share the responsibility for implementing
these protection mechanisms, the more complex aspects are
implemented in the hypervisor.

The most important protection provided by CDNA is that
it does not allow guest domains to directly enqueue DMA
descriptors into the network interface descriptor rings. In-
stead, the device driver in each guest must call into the hy-
pervisor to perform the enqueue operation. This allows the
hypervisor to validate that the physical addresses provided
by the guest are, in fact, owned by that guest domain. This
prevents a guest domain from arbitrarily transmitting from
or receiving into another guest domain. The hypervisor pre-
vents guest operating systems from independently enqueue-
ing unauthorized DMA descriptors by establishing the hy-
pervisor’s exclusive write access to the host memory region
containing the CDNA descriptor rings during driver initial-
ization.

As discussed in Section 2.2, conventional I/O devices au-
tonomously fetch and process DMA descriptors from host
memory at runtime. Though hypervisor-managed valida-
tion and enqueuing of DMA descriptors ensures that DMA
operations are valid when they are enqueued, the physical
memory could still be reallocated before it is accessed by
the network interface. There are two ways in which such a
protection violation could be exploited by a buggy or mali-
cious device driver. First, the guest could return the memory
to the hypervisor to be reallocated shortly after enqueueing
the DMA descriptor. Second, the guest could attempt to
reuse an old DMA descriptor in the descriptor ring that is
no longer valid.

When memory is freed by a guest operating system, it
becomes available for reallocation to another guest by the
hypervisor. Hence, ownership of the underlying physical
memory can change dynamically at runtime. However, it
is critical to prevent any possible reallocation of physical
memory during a DMA operation. CDNA achieves this by
delaying the reallocation of physical memory that is being
used in a DMA transaction until after that pending DMA
has completed. When the hypervisor enqueues a DMA de-
scriptor, it first establishes that the requesting guest owns
the physical memory associated with the requested DMA.
The hypervisor then increments the reference count for each
physical page associated with the requested DMA. This per-
page reference counting system already exists within the
Xen hypervisor; so long as the reference count is non-zero,
a physical page cannot be reallocated. Later, the hypervisor



then observes which DMA operations have completed and
decrements the associated reference counts. For efficiency,
the reference counts are only decremented when additional
DMA descriptors are enqueued, but there is no reason why
they could not be decremented more aggressively, if neces-
sary.

After enqueuing DMA descriptors, the device driver no-
tifies the NIC by writing a producer index into a mailbox
location within that guest’s context on the NIC. This pro-
ducer index indicates the location of the last of the newly
created DMA descriptors. The NIC then assumes that all
DMA descriptors up to the location indicated by the pro-
ducer index are valid. If the device driver in the guest incre-
ments the producer index past the last valid descriptor, the
NIC will attempt to use a stale DMA descriptor that is in the
descriptor ring. Since that descriptor was previously used
in a DMA operation, the hypervisor may have decremented
the reference count on the associated physical memory and
reallocated the physical memory.

To prevent such stale DMA descriptors from being used,
the hypervisor writes a strictly increasing sequence num-
ber into each DMA descriptor. The NIC then checks the
sequence number before using any DMA descriptor. If the
descriptor is valid, the sequence numbers will be continuous
modulo the size of the maximum sequence number. If they
are not, the NIC will refuse to use the descriptors and will
report a guest-specific protection fault error to the hypervi-
sor. Because each DMA descriptor in the ring buffer gets
a new, increasing sequence number, a stale descriptor will
have a sequence number exactly equal to the correct value
minus the number of descriptor slots in the buffer. Mak-
ing the maximum sequence number at least twice as large
as the number of DMA descriptors in a ring buffer prevents
aliasing and ensures that any stale sequence number will be
detected.

3.4 Discussion

The CDNA interrupt delivery mechanism is neither de-
vice nor Xen specific. This mechanism only requires the
device to transfer an interrupt bit vector to the hypervisor
via DMA prior to raising a physical interrupt. This is a rela-
tively simple mechanism from the perspective of the device
and is therefore generalizable to a variety of virtualized I/O
devices. Furthermore, it does not rely on any Xen-specific
features.

The handling of the DMA descriptors within the hyper-
visor is linked to a particular network interface only be-
cause the format of the DMA descriptors and their rings
is likely to be different for each device. As the hypervisor
must validate that the host addresses referred to in each de-
scriptor belong to the guest operating system that provided
them, the hypervisor must be aware of the descriptor for-

mat. Fortunately, there are only three fields of interest in any
DMA descriptor: an address, a length, and additional flags.
This commonality should make it possible to generalize the
mechanisms within the hypervisor by having the NIC notify
the hypervisor of its preferred format. The NIC would only
need to specify the size of the descriptor and the location
of the address, length, and flags. The hypervisor would not
need to interpret the flags, so they could just be copied into
the appropriate location. A generic NIC would also need
to support the use of sequence numbers within each DMA
descriptor. Again, the NIC could notify the hypervisor of
the size and location of the sequence number field within
the descriptors.

CDNA’s DMA memory protection is specific to Xen
only insofar as Xen permits guest operating systems to use
physical memory addresses. Consequently, the current im-
plementation must validate the ownership of those physical
addresses for every requested DMA operation. For VMMs
that only permit the guest to use virtual addresses, the hy-
pervisor could just as easily translate those virtual addresses
and ensure physical contiguity. The current CDNA imple-
mentation does not rely on physical addresses in the guest
at all; rather, a small library translates the driver’s virtual
addresses to physical addresses within the guest’s driver be-
fore making a hypercall request to enqueue a DMA descrip-
tor. For VMMs that use virtual addresses, this library would
do nothing.

4 CDNA NIC Implementation

To evaluate the CDNA concept in a real system,
RiceNIC, a programmable and reconfigurable FPGA-based
Gigabit Ethernet network interface [17], was modified to
provide virtualization support. RiceNIC contains a Virtex-
II Pro FPGA with two embedded 300MHz PowerPC pro-
cessors, hundreds of megabytes of on-board SRAM and
DRAM memories, a Gigabit Ethernet PHY, and a 64-
bit/66 MHz PCI interface [3]. Custom hardware assist units
for accelerated DMA transfers and MAC packet handling
are provided on the FPGA. The RiceNIC architecture is
similar to the architecture of a conventional network in-
terface. With basic firmware and the appropriate Linux or
FreeBSD device driver, it acts as a standard Gigabit Ether-
net network interface that is capable of fully saturating the
Ethernet link while only using one of the two embedded
processors.

To support CDNA, both the hardware and firmware of
the RiceNIC were modified to provide multiple protected
contexts and to multiplex network traffic. The network
interface was also modified to interact with the hypervi-
sor through a dedicated context to allow privileged man-
agement operations. The modified hardware and firmware
components work together to implement the CDNA inter-



faces.
To support CDNA, the most significant addition to the

network interface is the specialized use of the 2 MB SRAM
on the NIC. This SRAM is accessible via PIO from the host.
For CDNA, 128 KB of the SRAM is divided into 32 parti-
tions of 4 KB each. Each of these partitions is an interface
to a separate hardwarecontexton the NIC. Only the SRAM
can be memory mapped into the host’s address space, so no
other memory locations on the NIC are accessible via PIO.
As a context’s memory partition is the same size as a page
on the host system and because the region is page-aligned,
the hypervisor can trivially map each context into a differ-
ent guest domain’s address space. The device drivers in the
guest domains may use these 4 KB partitions as general pur-
pose shared memory between the corresponding guest op-
erating system and the network interface.

Within each context’s partition, the lowest 24 memory
locations are mailboxes that can be used to communicate
from the driver to the NIC. When any mailbox is written
by PIO, a global mailbox event is automatically generated
by the FPGA hardware. The NIC firmware can then pro-
cess the event and efficiently determine which mailbox and
corresponding context has been written by decoding a two-
level hierarchy of bit vectors. All of the bit vectors are gen-
erated automatically by the hardware and stored in a data
scratchpad for high speed access by the processor. The first
bit vector in the hierarchy determines which of the 32 po-
tential contexts have updated mailbox events to process, and
the second vector in the hierarchy determines which mail-
box(es) in a particular context have been updated. Once the
specific mailbox has been identified, that off-chip SRAM
location can be read by the firmware and the mailbox infor-
mation processed.

The mailbox event and associated hierarchy of bit vec-
tors are managed by a small hardware core that snoops
data on the SRAM bus and dispatches notification messages
when a mailbox is updated. A small state machine decodes
these messages and incrementally updates the data scratch-
pad with the modified bit vectors. This state machine also
handles event-clear messages from the processor that can
clear multiple events from a single context at once.

Each context requires 128 KB of storage on the NIC
for metadata, such as the rings of transmit- and receive-
DMA descriptors provided by the host operating systems.
Furthermore, each context uses 128 KB of memory on the
NIC for buffering transmit packet data and 128 KB for re-
ceive packet data. However, the NIC’s transmit and receive
packet buffers are each managed globally, and hence packet
buffering is shared across all contexts.

The modifications to the RiceNIC to support CDNA
were minimal. The major hardware change was the addi-
tional mailbox storage and handling logic. This could eas-
ily be added to an existing NIC without interfering with the

normal operation of the network interface—unvirtualized
device drivers would use a single context’s mailboxes to in-
teract with the base firmware. Furthermore, the computa-
tion and storage requirements of CDNA are minimal. Only
one of the RiceNIC’s two embedded processors is needed
to saturate the network, and only 12 MB of memory on the
NIC is needed to support 32 contexts. Therefore, with mi-
nor modifications, commodity network interfaces could eas-
ily provide sufficient computation and storage resources to
support CDNA.

5 Evaluation

5.1 Experimental Setup

The performance of Xen and CDNA network virtual-
ization was evaluated on an AMD Opteron-based system
running Xen 3 Unstable2. This system used a Tyan S2882
motherboard with a single Opteron 250 processor and 4GB
of DDR400 SDRAM. Xen 3 Unstable was used because it
provides the latest support for high-performance network-
ing, including TCP segmentation offloading, and the most
recent version of Xenoprof [13] for profiling the entire sys-
tem.

In all experiments, the driver domain was configured
with 256 MB of memory and each of 24 guest domains were
configured with 128 MB of memory. Each guest domain ran
a stripped-down Linux 2.6.16.29 kernel with minimal ser-
vices for memory efficiency and performance. For the base
Xen experiments, a single dual-port Intel Pro/1000 MT NIC
was used in the system. In the CDNA experiments, two
RiceNICs configured to support CDNA were used in the
system. Linux TCP parameters and NIC coalescing options
were tuned in the driver domain and guest domains for opti-
mal performance. For all experiments, checksum offloading
and scatter/gather I/O were enabled. TCP segmentation off-
loading was enabled for experiments using the Intel NICs,
but disabled for those using the RiceNICs due to lack of
support. The Xen system was setup to communicate with a
similar Opteron system that was running a native Linux ker-
nel. This system was tuned so that it could easily saturate
two NICs both transmitting and receiving so that it would
never be the bottleneck in any of the tests.

To validate the performance of the CDNA approach,
multiple simultaneous connections across multiple NICs to
multiple guests domains were needed. A multithreaded,
event-driven, lightweight network benchmark program was
developed to distribute traffic across a configurable number
of connections. The benchmark program balances the band-
width across all connections to ensure fairness and uses a
single buffer per thread to send and receive data to minimize
the memory footprint and improve cache performance.

2Changeset 12053:874cc0ff214d from 11/1/2006.



System NIC Mb/s
Domain Execution Profile Interrupts/s

Hyp
Driver Domain Guest OS

Idle
Driver Guest

OS User OS User Domain OS

Xen Intel 1602 19.8% 35.7% 0.8% 39.7% 1.0% 3.0% 7,438 7,853
Xen RiceNIC 1674 13.7% 41.5% 0.5% 39.5% 1.0% 3.8% 8,839 5,661

CDNA RiceNIC 1867 10.2% 0.3% 0.2% 37.8% 0.7% 50.8% 0 13,659

Table 2. Transmit performance for a single guest with 2 NICs u sing Xen and CDNA.

System NIC Mb/s
Domain Execution Profile Interrupts/s

Hyp
Driver Domain Guest OS

Idle
Driver Guest

OS User OS User Domain OS

Xen Intel 1112 25.7% 36.8% 0.5% 31.0% 1.0% 5.0% 11,138 5,193
Xen RiceNIC 1075 30.6% 39.4% 0.6% 28.8% 0.6% 0% 10,946 5,163

CDNA RiceNIC 1874 9.9% 0.3% 0.2% 48.0% 0.7% 40.9% 0 7,402

Table 3. Receive performance for a single guest with 2 NICs us ing Xen and CDNA.

5.2 Single Guest Performance

Tables 2 and 3 show the transmit and receive perfor-
mance of a single guest operating system over two physi-
cal network interfaces using Xen and CDNA. The first two
rows of each table show the performance of the Xen I/O
virtualization architecture using both the Intel and RiceNIC
network interfaces. The third row of each table shows the
performance of the CDNA I/O virtualization architecture.

The Intel network interface can only be used with Xen
through the use of software virtualization. However, the
RiceNIC can be used with both CDNA and software virtu-
alization. To use the RiceNIC interface with software virtu-
alization, a context was assigned to the driver domain and
no contexts were assigned to the guest operating system.
Therefore, all network traffic from the guest operating sys-
tem is routed via the driver domain as it normally would be,
through the use of software virtualization. Within the driver
domain, all of the mechanisms within the CDNA NIC are
used identically to the way they would be used by a guest
operating system when configured to use concurrent direct
network access. As the tables show, the Intel network inter-
face performs similarly to the RiceNIC network interface.
Therefore, the benefits achieved with CDNA are the result
of the CDNA I/O virtualization architecture, not the result
of differences in network interface performance.

Note that in Xen the interrupt rate for the guest is not nec-
essarily the same as it is for the driver. This is because the
back-end driver within the driver domain attempts to inter-
rupt the guest operating system whenever it generates new
work for the front-end driver. This can happen at a higher
or lower rate than the actual interrupt rate generated by the
network interface depending on a variety of factors, includ-
ing the number of packets that traverse the Ethernet bridge
each time the driver domain is scheduled by the hypervisor.

Table 2 shows that using all of the available processing
resources, Xen’s software virtualization is not able to trans-
mit at line rate over two network interfaces with either the
Intel hardware or the RiceNIC hardware. However, only
41% of the processor is used by the guest operating system.
The remaining resources are consumed by Xen overheads—
using the Intel hardware, approximately 20% in the hyper-
visor and 37% in the driver domain performing software
multiplexing and other tasks.

As the table shows, CDNA is able to saturate two net-
work interfaces, whereas traditional Xen networking can-
not. Additionally, CDNA performs far more efficiently,
with 51% processor idle time. The increase in idle time
is primarily the result of two factors. First, nearly all of
the time spent in the driver domain is eliminated. The re-
maining time spent in the driver domain is unrelated to net-
working tasks. Second, the time spent in the hypervisor is
decreased. With Xen, the hypervisor spends the bulk of its
time managing the interactions between the front-end and
back-end virtual network interface drivers. CDNA elimi-
nates these communication overheads with the driver do-
main, so the hypervisor instead spends the bulk of its time
managing DMA memory protection.

Table 3 shows the receive performance of the same con-
figurations. Receiving network traffic requires more pro-
cessor resources, so Xen only achieves 1112 Mb/s with the
Intel network interface, and slightly lower with the RiceNIC
interface. Again, Xen overheads consume the bulk of the
time, as the guest operating system only consumes about
32% of the processor resources when using the Intel hard-
ware.

As the table shows, not only is CDNA able to saturate
the two network interfaces, it does so with 41% idle time.
Again, nearly all of the time spent in the driver domain is
eliminated. As with the transmit case, the CDNA archi-



System DMA Protection Mb/s
Domain Execution Profile Interrupts/s

Hyp
Driver Domain Guest OS

Idle
Driver Guest

OS User OS User Domain OS

CDNA (Transmit) Enabled 1867 10.2% 0.3% 0.2% 37.8% 0.7% 50.8% 0 13,659
CDNA (Transmit) Disabled 1867 1.9% 0.2% 0.2% 37.0% 0.3% 60.4% 0 13,680

CDNA (Receive) Enabled 1874 9.9% 0.3% 0.2% 48.0% 0.7% 40.9% 0 7,402
CDNA (Receive) Disabled 1874 1.9% 0.2% 0.2% 47.2% 0.3% 50.2% 0 7,243

Table 4. CDNA 2-NIC transmit and receive performance with an d without DMA memory protection.

tecture permits the hypervisor to spend its time performing
DMA memory protection rather than managing higher-cost
interdomain communications as is required using software
virtualization.

In summary, the CDNA I/O virtualization architecture
provides significant performance improvements over Xen
for both transmit and receive. On the transmit side,
CDNA requires half the processor resources to deliver about
200 Mb/s higher throughput. On the receive side, CDNA
requires 60% of the processor resources to deliver about
750 Mb/s higher throughput.

5.3 Memory Protection

The software-based protection mechanisms in CDNA
can potentially be replaced by a hardware IOMMU. For
example, AMD has proposed an IOMMU architecture for
virtualization that restricts the physical memory that canbe
accessed by each device [2]. AMD’s proposed architecture
provides memory protection as long as each device is only
accessed by a single domain. For CDNA, such an IOMMU
would have to be extended to work on a per-context basis,
rather than a per-device basis. This would also require a
mechanism to indicate a context for each DMA transfer.
Since CDNA only distinguishes between guest operating
systems and not traffic flows, there are a limited number of
contexts, which may make a generic system-level context-
aware IOMMU practical.

Table 4 shows the performance of the CDNA I/O virtu-
alization architecture both with and without DMA memory
protection. (The performance of CDNA with DMA mem-
ory protection enabled was replicated from Tables 2 and 3
for comparison purposes.) By disabling DMA memory pro-
tection, the performance of the modified CDNA system es-
tablishes an upper bound on achievable performance in a
system with an appropriate IOMMU. However, there would
be additional hypervisor overhead to manage the IOMMU
that is not accounted for by this experiment. Since CDNA
can already saturate two network interfaces for both trans-
mit and receive traffic, the effect of removing DMA protec-
tion is to increase the idle time by about 9%. As the table
shows, this increase in idle time is the direct result of reduc-
ing the number of hypercalls from the guests and the time

spent in the hypervisor performing protection operations.
Even as systems begin to provide IOMMU support for

techniques such as CDNA, older systems will continue
to lack such features. In order to generalize the design
of CDNA for systems with and without an appropriate
IOMMU, wrapper functions could be used around the hy-
percalls within the guest device drivers. The hypervisor
must notify the guest whether or not there is an IOMMU.
When no IOMMU is present, the wrappers would simply
call the hypervisor, as described here. When an IOMMU is
present, the wrapper would instead create DMA descriptors
without hypervisor intervention and only invoke the hyper-
visor to set up the IOMMU. Such wrappers already exist
in modern operating systems to deal with such IOMMU is-
sues.

5.4 Scalability

Figures 3 and 4 show the aggregate transmit and receive
throughput, respectively, of Xen and CDNA with two net-
work interfaces as the number of guest operating systems
varies. The percentage of CPU idle time is also plotted
above each data point. CDNA outperforms Xen for both
transmit and receive both for a single guest, as previously
shown in Tables 2 and 3, and as the number of guest oper-
ating systems is increased.

As the figures show, the performance of both CDNA and
software virtualization degrades as the number of guests in-
creases. For Xen, this results in declining bandwidth, but
the marginal reduction in bandwidth decreases with each in-
crease in the number of guests. For CDNA, while the band-
width remains constant, the idle time decreases to zero. De-
spite the fact that there is no idle time for 8 or more guests,
CDNA is still able to maintain constant bandwidth. This
is consistent with the leveling of the bandwidth achieved
by software virtualization. Therefore, it is likely that with
more CDNA NICs, the throughput curve would have a sim-
ilar shape to that of software virtualization, but with a much
higher peak throughput when using 1–4 guests.

These results clearly show that not only does CDNA de-
liver better network performance for a single guest operat-
ing system within Xen, but it also maintains significantly
higher bandwidth as the number of guest operating systems



1 2 4 8 12 16 20 24
400

600

800

1000

1200

1400

1600

1800

2000

Xen Guests

X
en

 T
ra

ns
m

it 
T

hr
ou

gh
pu

t (
M

bp
s)

50.8%
25.4%

5.9%
0% 0% 0% 0% 0%

3.0%
0%

0%

0%

0%

0% 0% 0%

CDNA / RiceNIC
Xen / Intel

Figure 3. Transmit throughput for Xen and
CDNA (with CDNA idle time).

1 2 4 8 12 16 20 24
400

600

800

1000

1200

1400

1600

1800

2000

Xen Guests

X
en

 R
ec

ei
ve

 T
hr

ou
gh

pu
t (

M
bp

s)

40.9%
29.1%

12.6%
0% 0% 0% 0% 0%

5.0%

0%

0%

0%

0%
0%

0% 0%

CDNA / RiceNIC
Xen / Intel

Figure 4. Receive throughput for Xen and
CDNA (with CDNA idle time).

is increased. With 24 guest operating systems, CDNA’s
transmit bandwidth is a factor of 2.1 higher than Xen’s and
CDNA’s receive bandwidth is a factor of 3.3 higher than
Xen’s.

6 Related Work

Previous studies have also found that network virtualiza-
tion implemented entirely in software has high overhead.
In 2001, Sugerman,et al. showed that in VMware, it
could take up to six times the processor resources to satu-
rate a 100 Mb/s network than in native Linux [19]. Sim-
ilarly, in 2005, Menon,et al. showed that in Xen, net-
work throughput degrades by up to a factor of 5 over native
Linux for processor-bound networking workloads using Gi-
gabit Ethernet links [13]. Section 2.3 shows that the I/O
performance of Xen has improved, but there is still signif-
icant network virtualization overhead. Menon,et al. have
also shown that it is possible to improve transmit perfor-
mance with software-only mechanisms (mainly by lever-
aging TSO) [12]. However, there are no known software
mechanisms to substantively improve receive performance.

Motivated by these performance issues, Raj and Schwan
presented an Ethernet network interface targeted at VMMs
that performs traffic multiplexing and interrupt deliv-
ery [16]. While their proposed architecture bears some sim-
ilarity to CDNA, they did not present any mechanism for
DMA memory protection.

As a result of the growing popularity of VMMs for
commodity hardware, both AMD and Intel are introduc-
ing virtualization support to their microprocessors [2, 10].
This virtualization support should improve the performance
of VMMs by providing mechanisms to simplify isolation

among guest operating systems and to enable the hypervisor
to occupy a new privilege level distinct from those normally
used by the operating system. These improvements will
reduce the duration and frequency of calls into the hyper-
visor, which should decrease the performance overhead of
virtualization. However, none of the proposed innovations
directly address the network performance issues discussed
in this paper, such as the inherent overhead in multiplexing
and copying/remapping data between the guest and driver
domains. While the context switches between the two do-
mains may be reduced in number or accelerated, the over-
head of communication and multiplexing within the driver
domain will remain. Therefore, concurrent direct network
access will continue to be an important element of VMMs
for networking workloads.

VMMs that utilize full virtualization, such as VMware
ESX Server [7], support full binary compatibility with un-
modified guest operating systems. This impacts the I/O vir-
tualization architecture of such systems, as the guest op-
erating system must be able to use its unmodified native
device driver to access the virtual network interface. How-
ever, VMware also allows the use of paravirtualized net-
work drivers (i.e., vmxnet), which enables the use of tech-
niques such as CDNA.

The CDNA architecture is similar to that of user-level
networking architectures that allow processes to bypass the
operating system and access the NIC directly [5, 6, 8, 14,
15, 18, 20, 21]. Like CDNA, these architectures require
DMA memory protection, an interrupt delivery mechanism,
and network traffic multiplexing. Both user-level network-
ing architectures and CDNA handle traffic multiplexing on
the network interface. The only difference is that user-
level NICs handle flows on a per-application basis, whereas



CDNA deals with flows on a per-OS basis. However, as the
networking software in the operating system is quite differ-
ent than that for user-level networking, CDNA relies on dif-
ferent mechanisms to implement DMA memory protection
and interrupt delivery.

To provide DMA memory protection, user-level net-
working architectures rely on memory registration with
both the operating system and the network interface hard-
ware. The NIC will only perform DMA transfers to or
from an application’s buffers that have been registered with
the NIC by the operating system. Because registration is a
costly operation that involves communication with the NIC,
applications typically register buffers during initialization,
use them over the life of the application, and then deregister
them during termination. However, this model of registra-
tion is impractical for modern operating systems that sup-
port zero-copy I/O. With zero-copy I/O, any part of physi-
cal memory may be used as a network buffer at any time.
CDNA provides DMA memory protection without actively
registering buffers on the NIC. Instead, CDNA relies on the
hypervisor to enqueue validated buffers to the NIC by aug-
menting the hypervisor’s existing memory-ownership func-
tionality. This avoids costly runtime registration I/O and
permits safe DMA operations to and from arbitrary physi-
cal addresses.

Because user-level networking applications typically
employ polling at runtime rather than interrupts to deter-
mine when I/O operations have completed, interrupt deliv-
ery is relatively unimportant to the performance of such ap-
plications and may be implemented through a series of OS
and application library layers. In contrast, interrupt deliv-
ery is an integral part of networking within the operating
system. The interrupt delivery mechanism within CDNA
efficiently delivers virtual interrupts to the appropriateguest
operating systems.

Liu, et al. showed that user-level network interfaces can
be used with VMMs to provide user-level access to the net-
work from application processes running on a guest oper-
ating system within a virtual machine [11]. Their imple-
mentation replicates the existing memory registration and
interrupt delivery interfaces of user-level NICs in the privi-
leged driver domain, which forces such operations through
that domain and further increases their costs. Conversely,
CDNA simplifies these operations, enabling them to be ef-
ficiently implemented within the hypervisor.

7 Conclusion

Xen’s software-based I/O virtualization architecture
leads to significant network performance overheads. While
this architecture supports a variety of hardware, the hyper-
visor and driver domain consume as much as 70% of the
execution time during network transfers. A network inter-

face that supports the CDNA I/O virtualization architec-
ture eliminates much of this overhead, leading to dramat-
ically improved single-guest performance and better scala-
bility. With a single guest operating system using two Gi-
gabit network interfaces, Xen consumes all available pro-
cessing resources but falls well short of achieving the in-
terfaces’ line rate, sustaining 1602 Mb/s for transmit traf-
fic and 1112 Mb/s for receive traffic. In contrast, CDNA
saturates two interfaces for both transmit and receive traf-
fic with 50.8% and 40.9% processor idle time, respectively.
Furthermore, CDNA also maintains higher bandwidth as
the number of guest operating systems increases. With 24
guest operating systems, CDNA improves aggregate trans-
mit performance by a factor of 2.1 and aggregate receive
performance by a factor of 3.3.

Concurrent direct network access is not specific to the
Xen VMM. Any VMM that supports paravirtualized device
drivers could utilize CDNA. Even VMware, a full virtual-
ization environment, allows the use of paravirtualized de-
vice drivers. To support CDNA, a VMM would only need
to add mechanisms to deliver interrupts as directed by the
network interface and to perform DMA memory protection.
The interrupt delivery mechanism of CDNA is suitable for
a wide range of virtualized devices and would be relatively
straightforward to implement in any VMM. However, the
current implementation of CDNA’s protection mechanism
is specific to the Xen VMM and RiceNIC. In the future, the
protection mechanism could be modified, as described in
Section 3.4, to work with other devices and VMM environ-
ments.

This paper also shows that a commodity network inter-
face needs only modest hardware modifications in order to
support CDNA. As discussed in Section 4, three modifica-
tions would be required to enable a commodity NIC to sup-
port CDNA. First, the NIC must provide multiple contexts
that can be accessed by programmed I/O, requiring 128 KB
of memory in order to support 32 contexts. Second, the
NIC must support several mailboxes within each context.
Finally, the NIC must provide 12 MB of memory for use
by the 32 contexts. A commodity network interface with
these hardware modifications could support the CDNA I/O
virtualization architecture with appropriate firmware modi-
fications to service the multiple contexts, multiplex network
traffic, and deliver interrupt bit vectors to the hypervisor.

In summary, the CDNA I/O virtualization architecture
dramatically outperforms software-based I/O virtualization.
Moreover, CDNA is compatible with modern virtual ma-
chine monitors for commodity hardware. Finally, commod-
ity network interfaces only require minor modifications in
order to support CDNA. Therefore, the CDNA concept is a
cost-effective solution for I/O virtualization.



References

[1] K. Adams and O. Agesen. A comparison of software and
hardware techniques for x86 virtualization. InProceedings
of the Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Oct. 2006.

[2] Advanced Micro Devices.Secure Virtual Machine Architec-
ture Reference Manual, May 2005. Revision 3.01.

[3] Avnet Design Services.Xilinx Virtex-II Pro Development
Kit: User’s Guide, Nov. 2003. ADS-003704.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. InProceedings of the Symposium on Operat-
ing Systems Principles (SOSP), Oct. 2003.

[5] P. Buonadonna and D. Culler. Queue pair IP: a hybrid ar-
chitecture for system area networks. InProceedings of the
International Symposium on Computer Architecture (ISCA),
May 2002.

[6] Compaq Corporation, Intel Corporation, and Microsoft Cor-
poration. Virtual interface architecture specification, version
1.0.

[7] S. Devine, E. Bugnion, and M. Rosenblum. Virtualization
system including a virtual machine monitor for a computer
with a segmented architecture.US Patent #6,397,242, Oct.
1998.

[8] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shu-
bert, F. Berry, A. M. Merritt, E. Gronke, and C. Dodd. The
virtual interface architecture.IEEE Micro, 18(2), 1998.

[9] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson. Safe hardware access with the Xen virtual
machine monitor. InProceedings of the Workshop on Oper-
ating System and Architectural Support for the On Demand
IT InfraStructure (OASIS), Oct. 2004.

[10] Intel. Intel Virtualization Technology Specification for the
Intel Itanium Architecture (VT-i), Apr. 2005. Revision 2.0.

[11] J. Liu, W. Huang, B. Abali, and D. K. Panda. High perfor-
mance VMM-bypass I/O in virtual machines. InProceedings
of the USENIX Annual Technical Conference, June 2006.

[12] A. Menon, A. L. Cox, and W. Zwaenepoel. Optimizing net-
work virtualization in Xen. InProceedings of the USENIX
Annual Technical Conference, June 2006.

[13] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and
W. Zwaenepoel. Diagnosing performance overheads in the
Xen virtual machine environment. InProceedings of the
ACM/USENIX Conference on Virtual Execution Environ-
ments, June 2005.

[14] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachten-
berg. The QUADRICS network: High-performance cluster-
ing technology.IEEE MICRO, Jan. 2002.

[15] I. Pratt and K. Fraser. Arsenic: a user-accessible Gigabit
Ethernet interface. InIEEE INFOCOM 2001, pages 67–76,
Apr. 2001.

[16] H. Raj and K. Schwan. Implementing a scalable self-
virtualizing network interface on a multicore platform. In
Workshop on the Interaction between Operating Systems and
Computer Architecture, Oct. 2005.

[17] J. Shafer and S. Rixner. A Reconfigurable and Pro-
grammable Gigabit Ethernet Network Interface Card. Rice
University, Department of Electrical and Computer Engi-
neering, Dec. 2006. Technical Report TREE0611.

[18] P. Shivam, P. Wyckoff, and D. Panda. EMP: Zero-
copy OS-bypass NIC-driven Gigabit Ethernet message pass-
ing. In Proceedings of the Conference on Supercomputing
(SC2001), Nov. 2001.

[19] J. Sugerman, G. Venkitachalam, and B. Lim. Virtualizing I/O
devices on VMware Workstation’s hosted virtual machine
monitor. In Proceedings of the USENIX Annual Technical
Conference, June 2001.

[20] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: a
user-level network interface for parallel and distributed com-
puting. InProceedings of the Symposium on Operating Sys-
tems Principles (SOSP), Dec. 1995.

[21] T. von Eicken and W. Vogels. Evolution of the virtual inter-
face architecture.Computer, 31(11), 1998.

[22] A. Whitaker, M. Shaw, and S. Gribble. Scale and perfor-
mance in the Denali isolation kernel. InProceedings of the
Symposium on Operating Systems Design and Implementa-
tion (OSDI), Dec. 2002.


