
I/O Virtualization Bottlenecks in Cloud Computing Today

Jeffrey Shafer
Rice University
Houston, TX

shafer@rice.edu

ABSTRACT
Cloud computing is gaining popularity as a way to virtualize
the datacenter and increase flexibility in the use of compu-
tation resources. This type of system is best exemplified
by Amazon’s Elastic Compute Cloud and related products.
Recently, a new open-source framework called Eucalyptus
has been released that allows users to create private cloud
computing grids that are API-compatible with the existing
Amazon standards. Eucalyptus leverages existing virtual-
ization technology (the KVM or Xen hypervisors) and pop-
ular Linux distributions. Through the use of automated
scripts provided with Ubuntu, a private cloud can be in-
stalled, from scratch, in under 30 minutes. Here, Eucalyp-
tus is tested using I/O intensive applications in order to
determine if its performance is as good as its ease-of-use.
Unfortunately, limitations in commodity I/O virtualization
technology restrict the out-of-the-box storage bandwidth to
51% and 77% of a non-virtualized disk for writes and reads,
respectively. Similarly, out-of-the-box network bandwidth
to another host is only 71% and 45% of non-virtualized per-
formance for transmit and receive workloads, respectively.
These bottlenecks are present even on a test system mas-
sively over-provisioned in both memory and computation re-
sources. Similar restrictions are also evident in commercial
clouds provided by Amazon, showing that even after much
research effort I/O virtualization bottlenecks still challenge
the designers of modern systems.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems

General Terms
Measurement, Performance

Keywords
I/O Virtualization, Cloud Computing, Eucalyptus, Storage
Performance, Network Performance

1. INTRODUCTION
Virtualization technology has transformed the modern data-
center. Instead of installing applications directly onto phys-
ical machines, applications and operating systems are in-
stalled into virtual machine images, which in turn are exe-

This paper appeared at the Second Workshop on I/O Virtualization (WIOV
’10), March 13, 2010, Pittsburgh, PA, USA.

cuted by physical servers running a hypervisor. Virtualiz-
ing applications provides many benefits, including consoli-
dation — running multiple applications on a single physical
machine — and migration — transparently moving applica-
tions across physical machines for load balancing and fault
tolerance purposes. In this environment, the datacenter be-
comes a pool of interchangeable computation resources that
can be leveraged to execute whatever virtual machine images
(applications) are desired.

Once a datacenter is configured to provide generic computa-
tion resources, it becomes possible to outsource the physical
datacenter entirely to a third-party vendor. Beginning in
2006, Amazon started allowing resources in their datacen-
ters to be rented on-demand through their Elastic Compute
Cloud (EC2) service [3]. In this canonical example of pub-

lic cloud computing, customers can access computation re-
sources across the Internet. Virtual machine images can be
added or removed on demand. Such a capability is partic-
ularly useful for applications that vary greatly in terms of
resource requirements, saving clients from the expense of
building an in-house datacenter that is provisioned to sup-
port the highest predicted load.

Not every application, however, is suitable for deployment
to public clouds operated by third party vendors. Medical
records or credit card processing applications have security
concerns that may be challenging to solve, and many other
business applications may require higher levels of perfor-
mance, quality-of-service, and reliability that are not guar-
anteed by a public cloud service. Thus, there is a motivation
to maintain the administrative flexibility of cloud comput-
ing but keep all data behind the corporate firewall. This is
referred to as private cloud computing. To meet this need, a
new open-source framework called Eucalyptus was released
in 2008 to allow the creation of private clouds. Eucalyptus
implements the same API as Amazon’s public cloud com-
puting infrastructure, allowing for application images to be
migrated between private and public servers. By maintain-
ing API compatibility, the private cloud can be configured,
if desired, to burst images onto the public EC2 systems in
peak load situations, but otherwise operate entirely within
the private datacenter under normal load.

In this paper, the Eucalyptus framework is tested in a vari-
ety of configurations to determine its suitability for applica-
tions with high I/O performance requirements, such as the
Hadoop MapReduce framework for data-intensive comput-



Figure 1: Eucalyptus Cluster Architecture [11]

ing. Experiments were conducted to determine the peak
storage and network bandwidth available to applications
running in the virtual environment. As tested, bottlenecks
in the I/O virtualization framework degrade application per-
formance significantly, preventing the raw disk and network
capabilities from being provided to the virtual machines.
This motivates continued development and implementation
of the current best-practices in I/O virtualization.

2. EUCALYPTUS
Eucalytpus is an open-source cloud computing framework
that allows the creation of private clusters in enterprise
datacenters [2, 4]. Eucalyptus provides API compatibil-
ity with the most popular commercial cloud computing in-
frastructure — Amazon Web Services (AWS) — which al-
lows management tools to be used in both environments
and for computing images to be migrated between clouds
as desired. This framework is designed for compatibil-
ity across a broad spectrum of Linux distributions (e.g.,
Ubuntu, RHEL, OpenSUSE) and virtualization hypervisors
(e.g., KVM, Xen). It is the key component of the Ubuntu
Enterprise Cloud (EUC) product, which advertises that an
entire private cloud can be installed from the OS up in under
30 minutes (as confirmed during testing).

The arrangement of a Eucalytpus cluster and its key soft-
ware services is shown in Figure 1. These services include:

Cloud Controller (CLC) — The cloud controller provides
high-level management of the cloud resources. Clients wish-
ing to instantiate or terminate a virtual machine instance
interact with the cloud controller through either a web in-
terface or SOAP-based APIs that are compatible with AWS.

Cluster Controller (CC) — The cluster controller acts
as a gateway between the CLC and individual nodes in the
datacenter. It is responsible for controlling specific virtual
machine instances and managing the virtualized network.
The CC must be in the same Ethernet broadcast domain as
the nodes it manages.

Node Controller (NC) — The cluster contains a pool
of physical computers that provide generic computation re-
sources to the cluster. Each of these machines contains a
node controller service that is responsible for fetching virtual
machine images, starting and terminating their execution,
managing the virtual network endpoint, and configuring the
hypervisor and host OS as directed by the CC. The node
controller executes in the host domain (in KVM) or driver
domain (in Xen).

Elastic Block Storage Controller (EBS) — The storage
controller provides persistent virtual hard drives to applica-
tions executing in the cloud environment. To clients, these
storage resources appear as raw block-based devices and can
be formatted and used like any physical disk. But, in actual-
ity, the disk is not in the local machine, but is instead located
across the network. To accomplish this, virtual machines ac-
cess EBS storage through block-based disk I/O provided by
the hypervisor. This bridges the guest domain with the host
domain. In the host domain, a driver converts block-based
access into network packets that travel across the private
network and reach the remote disk. In Eucalyptus, the non-
routable (but lightweight) ATA over Ethernet protocol is
used for networked disk access, which requires that the vir-
tual machine and cluster controller be on the same Ethernet
segment [1]. EBS data is stored in pre-allocated files on disk,
but the same protocol could be used to export entire drives
directly across the network.



Walrus Storage Controller (WS3) – Walrus provides an
API-compatible implementation of the Amazon S3 (Simple
Storage Service) service. This service is used to store virtual
machine images and application data in a file, not block,
oriented format. The performance of this service was not
tested in this paper.

3. PERFORMANCE EVALUATION
In performance-testing the Eucalyptus framework, the goal
was to answer two questions. First, how effectively can cloud
computing applications access storage resources provided by
either local disks or EBS? Second, how effectively can cloud
computing applications access network resources? Given the
research that has been invested in I/O virtualization in re-
cent years, and the ease-of-installation that was promised by
Eucalyptus, the hope was that applications would perform
efficiently out-of-the-box.

3.1 Experimental System
To test Eucalyptus, a simplified two-node cluster was used.
A front-end node with two network interfaces was connected
to both the campus network and a private test network, and
a back-end node was connected only to the private network.
Both networks ran at gigabit speeds. The private network
was configured to support jumbo frames with a 9000 byte
MTU to accelerate EBS performance. The ATA over Ether-
net protocol used as the transport mechanism behind EBS
limits the disk request size to a single Ethernet frame for
simplicity, and fragments larger client requests. Thus, us-
ing the largest Ethernet frame size possible both uses the
disk more efficiently and reduces the protocol overhead in
relation to the payload.

The front-end node was equipped with two AMD Opteron
processors running at 2.4GHz with 4GB of RAM and a
500GB hard drive. It was configured to run the CLC, CC,
EBS, and WS3 services as shown in Figure 1.

The back-end node was equipped with two quad-Core AMD
Opteron processors running at 3.1GHz with 16GB of RAM
and a 500GB hard drive. These processors support the
AMD-V virtualization extensions as required for KVM sup-
port in Linux. The back-end node was configured to run the
NC service and all virtual machine images.

To provide a performance baseline, the storage and network
components were profiled outside of the virtual machine.
For storage, the Seagate Barracuda 7200.11 500GB hard
drive has a peak read and write bandwidth of approximately
110MB/s, assuming large block sizes (64kB+) and streaming
sequential access patterns. For networking, the gigabit Eth-
ernet network has a max application-level TCP throughput
of 940Mb/s for both transmit and receive. In an ideal cloud
computing system, this performance would be available to
applications running inside the virtual environment.

Three different software configurations were evaluated:

Eucalyptus with KVM — In the first configuration, Eu-
calyptus with the KVM hypervisor was used. This is a de-
fault installation of Ubuntu Enterprise Cloud (UEC), which
couples Eucalyptus 1.60 with the latest release of Ubuntu
9.10 [11]. The key benefit of UEC is ease-of-installation —

it took less than 30 minutes to install and configure the sim-
ple two-node system.

Eucalyptus with Xen — In the second configuration, Eu-
calyptus was used with the Xen hypervisor. Unfortunately,
Ubuntu 9.10 is not compatible with Xen when used as the
host domain (only as a guest domain). Thus, the CentOS
5.4 distribution was used instead because of its native com-
patibility with Xen 3.4.2. The guest VM image still used
Ubuntu 9.10.

Amazon EC2 — In addition to testing Eucalyptus on a
private cloud with both KVM and Xen hypervisors, the
Amazon EC2 cloud was also tested. This allows the open-
source Eucalyptus framework to be compared against its
best-known industry counterpart. Unlike the previous two
systems, which were otherwise idle (and should be consid-
ered best-case performance), the public Amazon datacenter
is a black box where the load averages are a mystery. An
EC2 host might have more guests running at the same time,
but might be outfitted with more memory, processors, and
disks too. This makes a fair comparison against Eucalyptus
(running in a controlled environment) difficult. As such, the
reported results for EC2 should be considered as average val-
ues. Images of Ubuntu 9.10 were prepared and executed on a
large-instance EC2 node, which, although more expensive on
a per-hour basis, was advertised to have the highest-available
I/O quota. A large EC2 instance also reduces the number
of other guests running on the host platform. Amazon pro-
vides both instance storage (presumed but not guaranteed
to be a local disk) and remote disk storage via EBS.

For all virtualized systems, only a single guest domain was
used. This represents a use case common in I/O intensive
computing applications (such as Hadoop), where a virtu-
alized host is primarily desired for installation convenience
(ability to add/remove nodes on demand), not for the pur-
pose of sharing a single machine or disk. Even if multiple
guests were present on a single host, they would likely have
dedicated disks, and would not share the same disk.

3.2 Test Applications
As a representative storage I/O intensive application that
is used on EC2 systems, Hadoop was installed in the test
virtual machine images. Hadoop is an open-source imple-
mentation of the MapReduce programming model for data-
intensive computing [5]. Hadoop allows a large pool of
loosely-synchronized processors to collaborate on a single
application in an efficient way. It accesses data in a sequen-
tial streaming manner that is highly conducive to achieving
high disk bandwidth. Inside the Hadoop framework (run-
ning in Java), a simple synthetic disk reader and writer
application was used to measure and report achieved disk
bandwidth over 20GB streaming runs. This test size was
much greater than the physical memory — and page cache
size — of the host system.

In addition to Hadoop, two other microbenchmarks were
used. First, the simple dd utility was also used to generate
storage requests similar to those produced by Hadoop, but
without the computation overhead of Java and the rest of the
MapReduce framework. When using dd, 20GB tests were
conducted using a 64kB block size. Second, the lightweight



VMM Target Driver Bandwidth Avgrq-sz Avgqu-sz % Util

None Local disk N/A 111 1024 140 100%

KVM Local file(*) SCSI/sparse file 1.3 30 0.9 90%
KVM Local disk SCSI/phy 71.5 256 0.57 64%
KVM Local disk SCSI/tap 70.0 256 0.58 59%
KVM Local disk Virtio/phy 110 1024 60 100%
KVM Local disk Virtio/tap 111 1024 60 100%
Xen Local file(*) SCSI/pre-alloc file 58.4 995 142 100%
Xen Local disk SCSI/phy 65.8 251 0.87 86%
Xen Local disk SCSI/tap 66.0 78 30 99%
Xen Local disk XVD/phy 102 700 3.0 100%
EC2 Instance Proprietary 65.8 - - -

None EBS N/A 65.2 N/A N/A N/A

KVM EBS(*) SCSI/phy 18.7 N/A N/A N/A
KVM EBS SCSI/tap 19.9 N/A N/A N/A
KVM EBS Virtio/phy 20.3 N/A N/A N/A
KVM EBS Virtio/tap 20.2 N/A N/A N/A
Xen EBS(*) SCSI/phy 26.5 N/A N/A N/A
Xen EBS SCSI/tap 19.9 N/A N/A N/A
EC2 EBS Proprietary 43.1 - - -

Table 1: DD Write Bandwidth (MB/s) and Disk Access Pattern Measured at Host Domain. Entries marked
(*) are Eucalyptus Default Configurations.

Figure 2: Eucalyptus Storage Bandwidth Overview

netperf utility was used to stress the virtual network with a
minimum computation overhead.

3.3 Storage Performance
Eucalyptus storage performance with the KVM hypervisor
(i.e., the default Ubuntu Enterprise Cloud configuration)
was initially evaluated using the simple dd utility. Three
different configurations were used: a local disk installed in
the back-end node and accessed directly from the host do-
main (for comparison purposes), a local disk installed into
the back-end node that contains a file that is mapped di-
rectly into the guest domain (using the UEC default file
option), and a remote disk located across the network that
contains a file that is accessed from the guest domain via
the EBS architecture described previously.

The results of this performance test are shown in Figure 2.
The initial storage bandwidth in the virtualized environ-
ment, as compared to the control (non-virtualized) environ-
ment, is very poor. When accessing local storage, write

bandwidth decreases by 98% and read bandwidth decreases
by 38%. When accessing remote (EBS) storage, write band-
width decreases by 83%, and read bandwidth decreases by
54%. These initial results motivate a deeper investigation
into I/O virtualization options available with Eucalyptus.

To investigate the cause of the poor out-of-the-box perfor-
mance, a new set of tests were conducted with the dd bench-
mark for a variety of storage I/O virtualization configura-
tions. Several virtual machine monitors (VMMs) were used
with Eucalyptus, including none (indicating that only the
host domain was used for comparison purposes), KVM (the
UEC default), and Xen. Amazon EC2 was also tested as
the industry standard for cloud computing. The storage
target was either a locally-attached disk (mapped in its en-
tirety into the guest, instead of the file-approach used by
default), or a network-attached EBS disk. Several I/O virtu-
alization mechanisms were used, including a fully-virtualized
SCSI driver (emulating a LSI Logic 53c895a controller) and
a para-virtualized Virtio driver [6, 9]. Both were attached
with either a tap or phy interface. Similarly, Xen used ei-
ther a fully-virtualized SCSI driver or para-virtualized XVD
driver. In the case of Amazon EC2, the exact nature of the
I/O virtualization mechanism is proprietary.

Several metrics were reported for each configuration. First,
the application-level bandwidth (as seen in the guest do-
main by the dd application) is provided. Next, several disk
utilization metrics were measured in the host domain (not
the guest domain) by the iostat utility to track disk access
efficiency after the influence of the I/O virtualization mech-
anism. These metrics include avgrq-sz, the average disk re-
quest size measured in 512 byte disk sectors, avgqu-sz, the
average queue depth measured in disk requests, and percent
utilization, the percent of time that the disk had at least
one request outstanding. These last two metrics are not
recorded for the EBS configuration, where the physical disk



VMM Target Driver Bandwidth Avgrq-sz Avgqu-sz % Util

None Local disk N/A 108 512 0.94 96%

KVM Local file(*) SCSI/sparse file 71.9 450 1.1 96%
KVM Local disk SCSI/phy 70.5 512 0.7 68%
KVM Local disk SCSI/tap 56.7 512 0.7 62%
KVM Local disk Virtio/phy 76.2 512 0.5 57%
KVM Local disk Virtio/tap 76.1 512 0.5 62%
Xen Local file(*) SCSI/pre-alloc file 83.1 241 1.6 99%
Xen Local disk SCSI/phy 42.8 14 22.4 99%
Xen Local disk SCSI/tap 35.3 11 22.0 99%
Xen Local disk XVD/phy 94.8 128 2.2 99%
EC2 Instance Proprietary 113.0 - - -

None EBS N/A 55.8 N/A N/A N/A

KVM EBS(*) SCSI/phy 49.5 N/A N/A N/A
KVM EBS SCSI/tap 46.2 N/A N/A N/A
KVM EBS Virtio/phy 48.0 N/A N/A N/A
KVM EBS Virtio/tap 46.3 N/A N/A N/A
Xen EBS(*) SCSI/phy 51.4 N/A N/A N/A
Xen EBS SCSI/tap 47.8 N/A N/A N/A
EC2 EBS Proprietary 68.0 - - -

Table 2: DD Read Bandwidth (MB/s) and Disk Access Pattern Measured at Host Domain. Entries marked
(*) are Eucalyptus Default Configurations.

is on the other side of the network. Further, they are not
available in EC2, where the host domain is restricted from
customer access.

There are many observations that can be made from inspect-
ing the results shown in Table 1 and Table 2 for write and
read tests, respectively. First, the default Eucalyptus config-
uration for local storage in KVM — mapping a sparse file on
local disk into the guest domain — has terrible write perfor-
mance. Part of the poor performance is due to the overhead
of growing the file dynamically during write operations, and
part is due to the inefficient disk access size. As measured,
each disk write operation averages 15 sectors per access, or
7.5kB. To determine the best-case performance of the target
disk at this small access size, the dd microbenchmark was
run in the host domain with the same access size. The max-
imum write bandwidth measured was 15.7MB, compared to
a write bandwidth of over 100 MB/s for the same disk using
64kB access sizes. In addition to small access sizes, the disk
is not even utilized 100% of the time, degrading performance
further when the host waits on I/O requests from the guest.
Other tests that used the entire local disk or pre-allocated a
file on disk (like Xen) did not exhibit this severe performance
degradation. Thus, for any type of data-intensive applica-
tion (like the target application, Hadoop), sparse file-based
access should not be used.

Second, para-virtualized drivers enabled higher bandwidth
communication between the guest domain and storage de-
vice compared to fully-virtualized devices. This is true re-
gardless of whether the disk was locally attached or accessed
across the network. For example, when writing to a locally-
attached disk in KVM, the virtio driver was able to achieve
full disk bandwidth by maintaining a large queue (60 ele-
ments) of large requests (512kB each), thus keeping the disk
busy 100% of the time.

Third, although para-virtualized I/O in KVM achieved
higher read bandwidth to a local disk than fully-virtualized
I/O, the best achieved bandwidth of 76MB/s for a local disk
is only 70% of the non-virtualized disk bandwidth of 108
MB/s. The challenge in maintaining high read bandwidth
is the synchronous nature of the test application, which does
not queue requests but rather sends a single request to disk,
waits for the reply, and then issues another request. Because
of the increased latency between the guest and host domain,
the disk sits idle in KVM for 30-40% of the time. This is a
significant difference from writing to the disk. When writing,
the para-virtualized driver can immediately acknowledge a
synchronous write (allowing the client to continue), aggre-
gate multiple writes in the guest domain, transfer them in a
batch to the host domain, and present them in a queue for
the disk to commit when ready. When writing, large queues
were maintained for the drive to process at all times, keeping
the disk 100% busy and operating at high bandwidth.

To overcome this bottleneck in storage reads, asynchronous
I/O (AIO) should be used by applications running in the
guest domain to provide a queue of read requests instead of
a single request [7, 10]. This poses a difficulty in Linux, how-
ever, where AIO is only enabled when files are opened using
the O DIRECT mode, which bypasses the page cache and
(in a non-virtualized system, at least) does a direct transfer
from the device into the user-space buffer. Otherwise, the
system transparently reverts to using standard synchronous
I/O.

Finally, the performance of writing to EBS storage when
accessed inside a guest domain is significantly worse than
writing to the same EBS device from inside the host domain.
For example, KVM degrades performance by almost 68%.
This indicates that the storage virtualization mechanism,
not the network transport mechanism, is the bottleneck in
this network storage architecture. This bottleneck is less



Figure 3: Hadoop Storage Bandwidth

severe when reading from EBS storage, which experiences a
performance degradation of approximately 10%.

In addition to using the dd microbenchmark, storage
I/O performance in Eucalyptus was also evaluated using
Hadoop, a data-intensive computing framework that imple-
ments the MapReduce programming model. Inside Hadoop,
a simple synthetic reader and writer program was used to
test disk bandwidth. The same configurations of local and
remote (EBS) storage were evaluated using the KVM and
Xen hypervisors for both full (SCSI) and para-virtualized
(virtio or XVD) drivers. Results are compared against
Amazon EC2 using its default (proprietary) approach, and
Hadoop running in a non-virtualized environment. These
results are shown in Figure 3.

Several observations can be made from these experimen-
tal results. First, the fully-virtualized SCSI and para-
virtualized virtio drivers in KVM only achieve 60% of
the bandwidth of the non-virtualized Hadoop performance
(shown at the right of the figure). Second, accessing
network-based EBS storage incurs an additional perfor-
mance penalty beyond the limitations imposed by moving
block data between the virtual machine and the driver do-
main. Third, any of the Eucalyptus local disk configurations
outperform the Amazon EC2 instance, although it is impor-
tant to remember that the Eucalyptus system was otherwise
idle, while the load factor of the Amazon datacenter is un-
known.

3.4 Network Performance
In addition to storage bandwidth, the network performance
of Eucalyptus on KVM and Xen was also tested. For
KVM, both fully virtualized (e1000, the default) and para-
virtualized (virtio) drivers were used. Network performance
on Amazon EC2 was not tested because such results would
be heavily influenced by datacenter network congestion.
Network bandwidth was measured between the guest vir-
tual machine running on the back-end node and both the
driver domain (Dom0) and front-end node (which is not vir-

Figure 4: Netperf Network Throughput

tualized). Ideally, the network bandwidth to the driver do-
main should be several gigabits per second or more, and
only be limited by available CPU resources on the heavily
over-provisioned system. Further, the ideal external network
bandwidth to the front-end node should be limited by the
network wire speed. The results of these tests can be seen
in Figure 4.

Several results can be observed in the experimental results.
First, the achieved bandwidth to the driver domain (for both
transmit and receive) was unexpectedly low. In fact, band-
width to the driver domain was lower than bandwidth to
a different host, despite the fact that reaching another host
should incur much greater latency due to traversing network
interfaces at both ends of the network path! The bandwidth
never exceeded 700 Mb/s even with para-virtualized drivers,
even though bandwidth in this test should be limited only
by processor speed, and the processor was idle in excess of
90% of the time. Second, the achieved bandwidth failed to
saturate the gigabit NIC to the front-end node, except when
transmitting data using the Xen hypervisor. This demon-
strates that there is still a large gap between the current
performance of these virtualization systems, and the best
practices described in current research, which is able to sat-



urate a 10Gb/s Ethernet link from a guest domain [8].

4. CONCLUSIONS
Applications running in the Eucalyptus cloud computing
framework suffer from I/O virtualization bottlenecks in
KVM and Xen. The default configurations that use fully-
virtualized drivers and on-disk files (instead of full devices)
perform poorly out of the box. Even using the best default
configuration (with the Xen hypervisor), the guest domain
can achieve only 51% and 77% of non-virtualized perfor-
mance for storage writes and reads, respectively. Mapping in
full disk devices and using para-virtualized drivers narrows
but does not fully close this performance gap, particularly
when real applications (such as Hadoop) are used instead of
microbenchmarks. Re-writing applications running in the
guest domain to use asynchronous I/O could prove useful in
providing larger numbers of read requests to the virtual I/O
mechanism, and thus maintain higher disk utilization. In the
case of data-intensive computing using Hadoop, this would
only necessitate modifying the Hadoop framework, not every
MapReduce application written for Hadoop. Further, modi-
fying the EBS storage architecture such that the networked
disk driver runs inside of the guest domain instead of the
driver domain might provide benefits in terms of simplify-
ing the software stack and reducing any mismatch between
storage and network virtualization mechanisms. Although
this adds some administrative complexity to the guest do-
main, it has a performance advantage in that the virtualized
network interface — not the slower virtualized disk interface
— can be used to convey storage data into and out of the
guest domain.

5. REFERENCES
[1] AoE (ATA over ethernet).

http://support.coraid.com/documents/AoEr11.txt, 2009.
[2] Eucalyptus open-source cloud computing infrastructure - an

overview. Technical report, Eucalyptus, Inc., August 2009.
[3] Amazon web services. http://aws.amazon.com, January

2010.
[4] Eucalyptus community. http://open.eucalytpus.com,

January 2010.
[5] Hadoop. http://hadoop.apache.org, 2010.
[6] Virtio para-virtualized drivers.

http://wiki.libvirt.org/page/Virtio, 2010.

[7] C. Hellwig. The KVM/qemu storage stack.
http://events.linuxfoundation.org/eus09c4, 2009.

[8] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, and
S. Rixner. Achieving 10 gb/s using safe and transparent
network interface virtualization. In VEE ’09: Proceedings
of the 2009 ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, pages
61–70, New York, NY, USA, 2009. ACM.

[9] R. Russell. virtio: towards a de-facto standard for virtual
I/O devices. SIGOPS Oper. Syst. Rev., 42(5):95–103, 2008.

[10] S. R. Seelam and P. J. Teller. Virtual I/O scheduler: a
scheduler of schedulers for performance virtualization. In
VEE ’07: Proceedings of the 3rd international conference
on Virtual execution environments, pages 105–115, New
York, NY, USA, 2007. ACM.

[11] S. Wardley, E. Goyer, and N. Barcet. Ubuntu enterprise
cloud architecture. Technical report, Canonical, August
2009.


