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Abstract

A user-mode network stack was designed to reduce the network communication latency and jitter of data acquisition and
analysis programs. The resulting system has sub-millisecond I/O latency for small message sizes while running on the
Microsoft Windows operating system without any custom hardware requirements or application software modifications.
Existing applications are transparently redirected to use this custom network stack through the use of replacement
dynamic link libraries that intercept standard networking API calls. A software device driver redirects incoming packets
into the user-mode stack, allowing accelerated data (specifically, TCP and UDP for IPv4 and IPv6) to bypass the
Windows data path. In addition to the user-mode network stack, a network-based software clock with microsecond
resolution at the user-mode software level was also produced. This synchronization solution is compatible with Microsoft
Windows and the NTPv4 standard, requires no hardware support, and allows clock synchronization to run over a
commodity Ethernet network shared with application data, thereby significantly reducing the cost of deployment. The
architecture includes a centralized time service, an API that allows access to this time source from all user-mode
applications without the delay of a system call, and a device driver that identifies time synchronization packets in the
network stack and bypasses key sources of delay in the operating system.
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1. Introduction

High precision and low cost test data acquisition and
analysis systems are of wide interest in both commercial
and military circles today. These systems depend on timely
delivery of data samples from myriad sensors to control,
analysis, and logging applications, in order to allow those
applications to meet their own strict time deadlines. Fur-
ther, they also require accurate time synchronization in
order to correlate individual data samples across multiple
sensors. Current systems employ proprietary and expen-
sive hardware communication systems (such as reflective
memory) that can guarantee communication at the user
application level within a deterministic time [1], and use
external methods for time synchronization (such as GPS
or IRIG) [2, 3, 4]. The proprietary nature of the data and
time distribution systems increase maintenance costs and
force costly upgrades as the data acquisition system scales.
This paper describes a method to replace proprietary sys-
tems with a more flexible and cost-friendly Ethernet-based
system using non real-time computer operating systems
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(specifically, Microsoft Windows) running on commodity
computer hardware. On this hardware, network commu-
nication is provided with sub-millisecond latency and low
jitter, and network time synchronization is provided with
microsecond-level accuracy.

The challenge of coupling a non real-time operating
system (e.g., Microsoft Windows) with Ethernet as a data
transport mechanism is that such a system introduces ran-
dom and significant latencies in the transport of data sam-
ples. These delays may be caused by the network it-
self, due to packet loss and queuing delay at Ethernet
switches [5]. In a data acquisition system, however, it
is reasonable to assume that the network itself is over-
provisioned, and thus packet loss and queuing delay at
the Ethernet switches is minimal. Thus, the delay is of-
ten due to the way the Windows operating system handles
network traffic. Network stream bandwidth is prioritized
over per-message latency. Variable and random latencies
exist from the network interface, up through the Windows
network stack, to the user application. These latencies can
be of the order of tens to hundreds of milliseconds, thus
rendering real-time processing of data across the network
unviable [6, 7]. Controlling and reducing these communi-
cation delays is essential for data acquisition systems.

In addition to data communication, time synchroniza-
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tion is also essential in a data capture system. To enable
reliable post-test data analysis, individual data samples
must be correlated across different sensors. This requires
time-stamps across various processing computers to be
highly synchronized, which is typically accomplished us-
ing sources like GPS and IRIG. These existing methods
have a variety of drawbacks, however. Both require spe-
cialized receiver cards to be installed at each node, and
both require extensive physical wiring: GPS to reach an-
tennas with clear satellite reception, and IRIG to reach a
local master clock. This wiring is separate from the data
communication network.

Instead of hardware-based GPS and IRIG time syn-
chronization techniques, time can also be synchronized
over the same commodity Ethernet network through pro-
tocols such as NTPv4 (Network Time Protocol, version
4) and IEEE 1588-2008 (also called the Precision Time
Protocol or PTP). NTP provides a portable end-to-end
software-only solution. However, its algorithms are neg-
atively impacted by network delay and jitter at both the
Ethernet switch level (due to congestion) and the host level
(due to delays in moving network data between the NIC,
OS, and NTP application). As such, the clock accuracy is
only on the level of a few milliseconds for existing systems
running NTP. IEEE 1588 cancels out network delay and
jitter to achieve accuracy in the sub-microsecond range.
However, this is made possible only through the use of
dedicated hardware implemented inside high-end Ether-
net NICs and switches. Further, both of these existing
synchronization solutions fail to address the application-
specific requirements of a data acquisition system. Specif-
ically, the requirement is not to have accurate time on a
hardware NIC or time card. Rather, the requirement is
to have accurate time inside the user-mode application re-
sponsible for sampling experimental data and sending it
across the network.

The remainder of this paper describes a method to
build a data acquisition system using an Ethernet net-
work and Microsoft Windows OS. Section 2 introduces a
user-mode network stack that bypasses key sources of la-
tency and jitter inherent in the Windows network stack.
Section 3 describes a method of time synchronization that
can run on generic Ethernet networks and provide highly
accurate time at the user application level. Combining
these solutions allows Ethernet networks to replace pro-
prietary hardware in a prototype data acquisition system,
as described and tested in Sections 4 and 5.

2. User-Mode Network Stack Architecture

The user-mode network stack was designed to reduce
the network communication latency of software programs
running on the Microsoft Windows operating system. This
“fast-path” solution for TCP/UDP IPv4/IPv6 communi-
cation is implemented entirely in software and runs on
commodity computer hardware. Programs that require ac-
celerated network communication are transparently redi-
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Figure 1: Architecture Comparison – User-Mode Network Stack ver-
sus traditional Winsock Network Stack

rected to use this custom network stack through the use
of replacement dynamic link libraries that intercept stan-
dard networking API calls. No program modification is
required. A custom device driver redirects incoming pack-
ets into the user-mode stack, allowing accelerated data
to bypass the Windows data path. Accelerated programs
can co-exist with non-accelerated programs on the same
computer system. Applications accelerated with this user-
mode stack have communications with sufficiently low la-
tency and jitter to enable them to be used for data acqui-
sition and control systems.

An overview of the network architecture is shown in
Figure 1. An accelerated application using the user-mode
stack is shown on the left half of the figure, and a tradi-
tional “Winsock”-based application is shown on the right.
The “Winsock” (Windows Socket) API provides network
functions for the Microsoft Windows platform, and all ap-
plications still use this traditional API. In the accelerated
architecture, however, this API is implemented not by the
real Microsoft-provided Winsock layer and network stack,
but by the new user-mode network stack. This new stack
communicates with a custom kernel driver (following the
Windows Filtering Platform standard), allowing packets to
be injected at a low level in the operating system, thereby
bypassing most layers of the Microsoft network stack.

The key functional components of the architecture in-
clude a user-mode network stack, replacement dynamic
link libraries, a Windows service, and a kernel driver. Fig-
ure 2 shows the detailed system architecture, including all
key components and the communication between them, at
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Figure 2: User-Mode Network Stack Architecture

both the user and kernel levels. These components are
explained in the subsequent sections.

2.1. User-mode Network Stack

The user-mode network stack provides fast-path func-
tionality for accelerated applications. As shown in Fig-
ure 2, the user-mode stack provides a “Socket API” layer
that is a close replica of the Winsock API that is used
by Windows applications. Implementation focused on the
“Berkeley-style” socket functions, but also encompassed
some of the important Winsock 2.0 API. Below the Socket
API layer is the Netconn API layer. This layer represents
internal stack functions and is tightly coupled with the
core stack architecture, which is responsible for TCP and
UDP processing with either IPv4 or IPv6 packets.

Elements from the Lightweight IP (LWIP) [8] project
were used as the core of the user-mode network stack.
LWIP provides, out of the box, a full network stack so-
lution, including link layer (Ethernet), network layer (IP),
and transport layer (TCP, UDP) protocols. In addition,
it supports higher-layer protocols such as DNS (for do-
main name resolution), DHCP (for network address auto-
configuration), ARP (for resolving Ethernet addresses),
and more. Running the full LWIP stack produces an in-
dependent network entity on the Windows host system,
similar in effect to running a virtualized operating system
on top of a host operating system. While this design is

useful for embedded devices where no operating system is
present, it is unnecessary when running a user-mode stack
on top of Windows. In fact, it greatly complicates sys-
tem administration, because a single computer now has
two IP addresses, two MAC addresses, two DNS clients,
two DHCP clients, and more. Further, these LWIP vari-
ants are hidden from the standard Windows management
tools, potentially causing user confusion.

To simplify the overall system architecture, LWIP was
modified to tightly couple with the host Windows operat-
ing system in a variety of places that are not on the perfor-
mance critical path. This is the “WinRoute” box shown
in Figure 2. For example, instead of initiating and pro-
cessing its own ARP requests, DNS lookups, DHCP auto-
configuration, and more, LWIP defers to Windows by di-
rectly calling the relevant Windows APIs. Routing, specif-
ically the selection of the best outgoing NIC and source IP
address to reach a given destination, is also performed by
Windows. It is possible to run all of these operations in
Windows while still maintaining low latency because these
tasks occur infrequently. DHCP configuration is done at
system initialization and is not specifically relevant to the
target application, while DNS lookups, ARP lookups, and
routing are done when a socket is opened and a connection
established. As such, LWIP does not request Windows ser-
vices on a per-packet basis. The user-mode stack shares
the same IP and MAC addresses as the Windows stack,



simplifying administration and configuration.
The network stack core also keeps a set of internal per-

formance counters of key packet events, as labeled by the
“WinStat” box in Figure 2. Statistics include counters for
the number of IP, UDP, and TCP packets processed, num-
ber of currently active TCP connections, number of TCP
retransmissions, and other counters that are typically re-
ported by a system netstat application.

2.2. Replacement Dynamic Link Libraries (DLL)

One important design goal is to transparently accel-
erate network operations for selected applications without
modifying application source code. Indeed, for some legacy
applications, source code may not be available, or the ap-
plication may not be easily recompiled.

To accomplish this, the user-mode network stack pre-
serves key elements of the existing Winsock API that pro-
vides network functions for the Microsoft Windows plat-
form. Programs do not implement the Winsock API di-
rectly. Rather, they link against Microsoft-provided DLLs
such as ws2 32, wsock32, and mswsock. When a program
is started, the necessary DLLs are retrieved from disk and
loaded into memory in the program’s address space.

As shown in the user-mode network stack architecture
(Figure 2), the Winsock DLLs are replaced in memory –
for just the targeted program, not the entire computer
system – with custom DLLs. These custom DLLs ex-
port the same function calls as the Microsoft API. Inter-
nally, however, they forward calls into the user-mode net-
work stack, thereby allowing an application to be transpar-
ently redirected. Not every function in the Winsock API
has been implemented. Implementation focused on classic
“Berkeley-style” functions that are widely used, with pro-
prietary Winsock-only functions being implemented on an
as-needed basis for specific application support.

2.3. Windows Service

The background Windows service provided with the
user-mode stack facilitates better integration with non-
accelerated programs running on the same computer. For
example, it ensures that non-accelerated and accelerated
programs cannot both reserve the same network ports at
the same time. This is critically important because both
the Windows stack and the user-mode stack share the same
MAC addresses and IP addresses. In addition to coordi-
nating port reservations, the Windows service also pro-
vides access to the internal stack performance counters for
debugging and performance analysis purposes. A small
standalone program has been provided to read these val-
ues, and a generic interface allows other third-party pro-
grams to access the same statistics.

2.4. Filter Driver

This Kernel-Mode Driver Framework (KMDF) Win-
dows Filtering Platform (WFP) [9] filter driver ensures
that packets destined for the user-mode network stack are
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Figure 3: Time Synchronization Architecture

not seen by the standard Windows network stack, and vice
versa. The driver intercepts packets at the lowest level of
the WFP Filter Engine, thereby bypassing much of the
traditional Windows stack. Figure 2 depicts the WFP
kernel-mode filter driver architecture and how it fits into
the replacement user-mode TCP/IP stack.

3. Time Synchronization Service Architecture

A network-based software clock with microsecond res-
olution at the user-mode software level was also produced
to aid in data acquisition systems. Application programs
using this system can obtain a network-synchronized time-
stamp with extremely low latency without requiring either
expensive hardware timecards or even a relatively slow
or jitter-prone context switch into the operating system.
This system is compatible with Microsoft Windows and
the NTPv4 standard, requires no hardware support2, and
allows clock synchronization to run over a commodity Eth-
ernet network shared with application data, thereby sig-
nificantly reducing the cost of deployment. The network-
based software clock provides timestamps within 10 mi-
croseconds of the network reference clock.

The key functional components of the time synchro-
nization system include a central Windows time service,
an API that allows access to this unified time source from
all user-mode applications without the time delay of a sys-
tem call, and a Windows device driver that identifies time
synchronization packets in the network stack and bypasses
key sources of delay in the operating system. The interac-
tion of these components is shown in Figure 3.

3.1. Time Synchronization Service

All key time synchronization algorithms have been cen-
tralized into a single service that will provide a common

2CPU support for the Time Stamp Counter (TSC) is required
and provided in all modern Intel and AMD 64-bit processors



Table 1: User-Mode Stack Testbed Data Pattern and Per-Message Maximum Allowed Latency

Message Type 0
(TCP)

Message Type 1
(TCP)

Message Type 2
(UDP)

Message Type 3
(Low-latency TCP)

Data
Producer

Size
(KB)

Freq
(ms)

Latency
(ms)

Size
(KB)

Freq
(ms)

Latency
(ms)

Size
(KB)

Freq
(ms)

Latency
(ms)

Size
(KB)

Freq
(ms)

Latency
(ms)

1 0.5 200 100 0.5 200 100 1 200 100 0.01 200 10

2 320 80 40 640 80 40 4 80 40 0.1 10 10

3 0.75 100 50 1 100 50 2.5 100 50 0.1 100 10

4 8 100 50 8 100 50 3.2 100 50 0.1 100 10

5 4 100 50 4 100 50 1.6 100 50 0.1 100 10

6 20 100 50 20 100 50 4 100 50 0.1 100 10

7 10 100 50 10 100 50 2 100 50 0.1 100 10

8 0.2 250 125 0.2 250 125 0.4 250 125 0.01 250 10

9 0.4 500 250 0.4 500 250 0.8 500 250 0.01 500 10

10 0.4 100 50 0.4 100 50 0.8 100 50 0.1 100 10

11 0.25 100 50 0.25 100 50 0.5 100 50 0.1 100 10

12 150 100 50 150 100 50 4 100 50 0.1 100 10

time source for all applications on a computer. The opera-
tion of the time synchronization system is as follows. The
processor Time Stamp Counter (TSC) is employed for in-
ternal timekeeping, as it is the most stable clock available
in modern computers [10]. Further, it is accessible with a
single processor instruction and does not require a context
switch into the operating system. The TSC only provides
an incrementing counter, however. To convert that counter
to a time-stamp, two additional pieces of information are
needed: the offset between the counter and some known
reference time, and the rate at which the TSC increments.
Both of these pieces of information can be obtained by
sending a series of modified NTPv4 queries to a network
time server. The modification is that instead of sending re-
quest messages with NTP-style time-stamps, the request
messages contain raw TSC values instead. As the NTP
server simply echoes the request time-stamp back to the
requester for processing, this modification is transparent
to the server. Filtering algorithms select time-stamps with
the lowest network latency, and this information is used to
save a tuple of the NTP reference clock (wall time), local
TSC counter value, and the local TSC tick rate. When
a new time-stamp is required, a new TSC value is ob-
tained from the processor, and used to calculate an offset
to the previously saved reference time. Synchronization
can continue periodically to account for any drift in the
TSC. The resulting data is stored in a single-producer,
multiple-consumer data structure in a shared memory lo-
cation accessible to other applications running on the same
computer. Client applications access this data by means
of an API, described next.

3.2. Time Synchronization API

An Application Programmer Interface (API) is pro-
vided that allows any application to obtain time-stamps
by loading a DLL and making a simple function call. Be-
hind the scenes, the API interfaces via shared memory
with the time service, obtains the last known reference

time (global clock time plus the local processor TSC value
and tick rate), offsets the clock time based on the current
TSC value, and returns the time-stamp in NTP format to
the user. This API is accessible directly from user-mode
applications with no latency and jitter-inducing system
call required.

3.3. Filter Driver

A Windows Filtering Platform driver improves the syn-
chronization accuracy of the system by bypassing part of
the operating system and the socket interface to the user
application, thereby reducing latency and jitter. Time-
stamps (specifically, TSC values) are added to outgoing
NTP request packets late in the network stack process-
ing, and time-stamps of received NTP reply packets are
recorded early in the network stack processing. This im-
proves the overall quality of the synchronization solution.

4. User-Mode Stack Testbed

To test the effectiveness of the developed software at
delivering low end-to-end network delay at the software
application program interface level, a simulated data ac-
quisition and processing system was created in the labo-
ratory, and modeled after real data acquisition systems in
use today. In this abstracted view, multiple senders trans-
mit streams of data – at varying data rates and message
sizes – to a single receiver over a commodity Ethernet net-
work. The latency of each individual message is measured
by means of a hardware timecard synchronized to a master
timeserver via IEEE 1588-2008.

The specifications of the data pattern produced by the
experimental system are shown in Table 1. In this data
pattern, there are 12 data producers. Each producer sends
out four different types of messages using either TCP or
UDP, representing data flows from different applications
on the same producer. The maximum allowable latency
for each message type, from each data producer, is shown
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Figure 4: Per-Stream Maximum Observed Latencies for User-Mode Stack

in the table. Because there are 12 transmitters, there can
be no more than 12 simultaneous transmissions hitting a
single Ethernet switch with a highest load of using the
largest packet from each of the 12 senders. The data con-
sumer (receiver) would therefore see all transmissions, but
in a serialized fashion, coming out of the Ethernet switch.

To uniquely identify per-stream metrics and map stream
performance to the corresponding requirements, the pro-
ducer streams have been encoded to a unique identifier.
Each of the Data Producers numbered one through twelve
is responsible for four socket streams and have been given
base zero number mappings. This number is appended to
the Data Producer number to create a unique identifier
referred to as the “Producer ID”. For example, the ID for
“Producer 3 – Message Type 1, TCP Stream” is 31.

Figure 4 shows the performance of the user-mode stack
when measured with the testbed. The stack is running on a
single computer and receiving messages from the 12 data
producer streams. The elapsed message latency is mea-
sured, and the maximum latencies seen for each individual
message stream are recorded. The user-mode stack meets
the network latency targets under conditions that simulate
a realistic data acquisition and control system with many
parallel data flows. Additional performance optimization
is planned in order to improve the system further.

5. Time Synchronization Testbed

A lightweight test program was written to measure the
performance of the time synchronization system. This pro-
gram is run on a computer with a modern Intel Core i5-
class CPU, and sends NTP requests via gigabit Ethernet
to a hardware Meinberg time server that is synchronized
against GPS. For measurement purposes only, a Meinberg
PCIe hardware timecard was also installed in the test com-
puter and configured to synchronize over a separate Ether-
net network via IEEE 1588-2008 with the same hardware
time server. Published documentation on this configura-
tion indicates that the timecard provides a reference time
accurate to within ±20ns of the network time server.

Table 2: Synchronization Performance at Varying Sync Intervals

Sync API Time to Ref. Time
Rate Iterations Min Max Avg
(sec) (µs) (µs) (µs)

30 8 million -5.23 3.80 -1.52

30 32 million -6.65 4.11 -2.25

60 4 million -9.33 5.75 -2.06

120 4 million -8.54 1.86 -3.34

240 4 million -8.95 12.21 -2.87

480 4 million -34.88 27.88 -5.58

960 4 million -3.86 39.39 11.16

No sync 32 million -4.37 1700.99 596.03

The test program obtains a time-stamp first from the
time service via the API, then from the Meinberg time-
card, and then sleeps for a small random delay. This cycle
then repeats for a configurable number of iterations. A
“positive” offset between the API time and reference time
provided by the timecard represents the anticipated time
sequence, where time should be increasing between the
first and second time-stamps obtained. A “negative” time
represents the opposite ordering.

5.1. Results

Table 2 first shows the performance of the time service
in a test for 8 million measurement iterations, with the
time service resynchronizing with the time server every
30 seconds. In this standard configuration, performance
was excellent. The minimum recorded difference between
the API time and the hardware reference time was -5.23µs
(indicating the API time-stamp was later in time despite
being obtained earlier in software), and the maximum dif-
ference was 3.80µs (indicating that the API time-stamp
was earlier in time, as expected from program design).
The average difference was -1.52µs. Figure 5 shows a his-
togram of this same configuration, detailing the elapsed
time between the first API time-stamp and the Meinberg
timecard for 8 million measurements. The dashed blue
vertical lines represent the minimum and maximum time
offset recorded in the data set.



Figure 5: Histogram of Elapsed Time Between Time Service API
and Hardware Timecard

Table 2 also shows the performance of the time service
in two long-running tests that lasted for 4+ hours, totaling
32 million iterations. In the first test, the time service syn-
chronized with the network time server every 30 seconds.
In this standard configuration, performance was excellent.
The minimum recorded difference between the API time
and the hardware reference time was -6.65µs, the maxi-
mum difference was 4.11µs, and the average difference was
-2.25µs. Other configurations in the table show the impact
of reducing the synchronization interval from 30 seconds
to 60, 120, 240, 480, and 960 seconds, respectively. As
shown, the default synchronization interval of 30 seconds
is slightly aggressive, and a relaxed interval of 120 or even
240 seconds between synchronization attempts would still
provide an excellent quality of results within ±12µs of the
reference time.

In the final configuration labeled “No Sync”, the time
service synchronized with the network time server for the
first 5 minutes of the test. At that point, the service was
paused, and the test continued for the remaining 4+ hours
with no further software communication with the reference
time source. (The reference hardware timecard continued
to synchronize with the time server). This configuration
places significant pressure on the quality of the TSC rate
measurement, which is used to convert the absolute differ-
ence in TSC counter values into measurement of elapsed
time. Here, the minimum recorded difference between the
API time and the hardware reference time was -4.37µs, but
the maximum difference was 1700.99µs, which is a clock
skew of approximately 0.1 microseconds per second during
test operation. This shows the importance of providing a

consistently-available network time source for the synchro-
nization application, and also an area of potential future
work in refining the TSC rate estimate to reduce skew in
free-running operation.

6. Related Work

Several commercial products exist that provide real-
time capabilities to Microsoft Windows, including network-
ing, by using a partitioning approach. Examples include
IntervalZero’s RTX64 for Windows [11, 12] and TenAsys’
INtime for Windows [13]. In these systems, a custom
hard real-time operating system (RTOS) runs alongside
the Windows kernel and conventional software stack, re-
serving one or more CPU cores for its exclusive use. Ap-
plications requiring real-time service make network and
system API calls not into the regular Windows kernel, but
into facsimile APIs provided by the RTOS instead. Other
applications continue to use the Windows kernel. Applica-
tions may need to be modified to take advantage of RTOS
capabilities. In addition, these architectures require a ded-
icated network interface for use exclusively by the RTOS,
and thus hardware support is limited to devices supported
by the RTOS manufacturer [14].

Microsoft has provided additional programming APIs
in recent years to reduce the latency of network communi-
cation in Windows for applications such as high-frequency
trading. One such API is the Registered I/O (RIO) frame-
work added in Windows 8 / Server 2012 [15]. This API
requires programs to be modified, sometimes significantly,
in order to take advantage of the new capabilities.

User-level networking has a lengthy history in the high-
performance computing field. The VIA (Virtual Interface
Architecture) and its successor, InfiniBand, allow applica-
tions secure, zero-copy access to the network interface card
for communication. The goal is to remove the operating
system from the communication path, and reduce context
switching, data-copy, and protocol overheads. As a re-
sult of these architectural changes, applications must use
a new programming API for communication. To provide a
smoother transition for legacy software, the SOVIA (Sock-
ets Over VIA) [16] and Sockets Direct Protocol (SDP) [17]
for Infiniband allowed existing socket-based applications to
use the new underlying network architecture by providing
a user-mode translation layer.

The processor Time Stamp Counter (TSC) has pre-
viously been identified as a highly stable oscillator with
a resolution equal to the underlying CPU clock rate and
drift of under 0.1 parts per million [10]. The TSCclock [18]
and TSC-RCSP [19] systems provides similar LAN clock
synchronization performance to our architecture – under
10µs – albeit for the Linux or FreeBSD operating systems,
not Windows.



7. Conclusions

This paper presented a method for building data ac-
quisition systems using flexible and cost-friendly Ethernet
networks and non real-time computer operating systems
(OS) such as Microsoft Windows. To remedy the random
and significant latencies that such an architecture can pro-
duce, a new user-mode network stack and network-based
software clock were developed, thus enabling real-time pro-
cessing across multiple computers.

The network-based software clock provides time-stamps,
at the software API level of any Windows program, that
are within 10µs of a centralized NTP server on the lo-
cal area network. The software-only design eliminates the
need for dedicated hardware timecards or separate time
synchronization networks, both of which reduce installa-
tion cost and complexity.

The user-mode network stack reduces the network la-
tency for unmodified Windows applications that use com-
mon Winsock networking functions and standard IPv4 /
IPv6 and TCP/ UDP network protocols. A kernel driver
bypasses latency/jitter in Windows network stack by di-
verting packets to user-mode software. When tested against
a complex data pattern that represents different customer
systems in use today, all latency targets were met, and
small messages were delivered with sub-millisecond latency.
The user-mode network stack is a software-only solution,
which minimizes deployment costs and complexity. It can
transparently accelerate unmodified applications that use
common Winsock networking functions without the need
to modify application source code, which also minimizes
deployment cost. Only the desired applications are accel-
erated, while other non-performance-critical applications
continue to use the existing Windows network stack, pro-
viding deployment flexibility. The network stack shares
the same network addresses as Windows and requires only
the standard administrator tools to configure, simplifying
deployment. Administrator access is not required to run
the accelerated network stack, simplifying security consid-
erations.
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