
RiceNIC: A Reconfigurable Network Interface
for Experimental Research and Education

Jeffrey Shafer and Scott Rixner
Rice University
Houston, TX

{shafer,rixner}@rice.edu

ABSTRACT
The evaluation of new network server architectures is usu-
ally performed experimentally using either a simulator or a
hardware prototype. Accurate simulation of the hardware-
software interface within the network subsystem is challeng-
ing due to the interactions of multiple asynchronous systems.
Small timing inaccuracies in such a system can perturb the
hardware and software state yielding potentially mislead-
ing results. Hardware prototypes show more promise be-
cause they are real-world implementations, not simplifica-
tions. Existing Ethernet network interface cards (NICs) are
unsuitable for prototyping as they lack the capability and/or
flexibility for advanced networking research.

RiceNIC is an open network interface prototyping platform
for public use. This reconfigurable and programmable Gi-
gabit Ethernet NIC is designed to address the dilemma of
how to accurately evaluate new ideas in network server ar-
chitecture, and is built for use in experimental research and
education. The flexibility and capability of RiceNIC has
proven invaluable in recent research efforts.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques;
B.4.3 [Hardware]: Interconnections—Interfaces

General Terms
Experimentation, Design

Keywords
Network Interface Cards, Ethernet, FPGA Prototyping

1. INTRODUCTION
Networking has become an integral part of modern com-
puter systems. While the network interface has tradition-
ally been a simple device that forwards raw data between
the network and the operating system, its role is changing.
The field of network server architecture spans the network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ExpCS13-14 June 2007, San Diego, CA
Copyright 2007 ACM 978-1-59593-751-3 /07/06 ...$5.00

subsystem, from the operating system down to the local in-
terconnect and network interface card (NIC). Of particular
importance are the efficiency of the communication mech-
anisms between the operating system, including the device
driver, and the NIC. As communication is arguably one of
the most important aspects of modern computer systems,
optimization of the network subsystem is particularly im-
portant. To improve overall networking performance, work
in this field has produced sophisticated network interfaces
that perform functions such as TCP offloading, iSCSI, en-
cryption and firewalling, remote direct memory access, and
many others. These innovations all span both hardware and
software layers and include many complex interactions be-
tween the two.

Traditionally, such ideas are evaluated using either proto-
typing or simulation. Prototyping for research is frequently
done using existing programmable network interfaces. These
interfaces are typically underpowered for the proposed func-
tionality, limiting the value of the prototype. The behavior
of modern network protocols, such as TCP, is largely de-
pendent on overall system performance and behavior. This
means that it is difficult to accurately experimentally evalu-
ate such underpowered prototypes, as the network protocols
themselves will behave much differently than they will with
a fully capable device.

Simulation is often used in experimental research to obviate
the need for prototyping. However, simulation of the net-
work subsystem requires accurate modeling of most parts of
the host system architecture, and does not easily lend itself
to a simplified model. The performance of the network in-
terface depends on the behavior of the processor, memory
system, local interconnect, and the design of the interface
itself. All of these components operate asynchronously from
each other, and thus accurate simulation requires complete
models that correctly account for the complex interactions
between these systems. In addition to the hardware, a com-
plete software environment must be simulated, including the
operating system and device driver. This is very important
in network server architecture since many innovations in-
volve making changes to both hardware and software archi-
tecture at the same time. Finally, the behavior of network
protocols such as TCP are highly dependent on the behavior
of both systems in communication as well as the behavior of
the network. Even if the network server is accurately sim-
ulated, experimental evaluation still requires accurate sim-
ulation of the interaction between two TCP network stacks

1

on separate systems connected by an inherently chaotic in-
terconnect such as the Internet.

Given the challenges associated with network server ar-
chitecture simulation, research using experimental hard-
ware prototypes should be encouraged whenever possible.
RiceNIC, a reconfigurable and programmable Gigabit Eth-
ernet NIC, helps overcome these challenges. The NIC de-
sign is freely available and includes the FPGA bitstreams,
firmware, and Linux device driver. It provides researchers
with a flexible network interface that can be easily modified
to support a wide range of research activities, providing a
significant head-start compared with implementing an ex-
perimental prototype from scratch. It can also be used for
experimental class projects.

The NIC includes multiple FPGAs, large on-NIC memo-
ries in excess of 256 MB, two 300 MHz embedded PowerPC
processors, and a copper Gigabit Ethernet physical inter-
face and connector. Using only a single PowerPC proces-
sor, RiceNIC is able to saturate the Gigabit Ethernet net-
work link with maximum-sized packets. This leaves signif-
icant resources—including 50% of the reconfigurable logic
elements on the Virtex-II Pro FPGA, a spare PowerPC pro-
cessor, and hundreds of megabytes of memory—available on
RiceNIC for use in experimental networking research.

RiceNIC was used in a network research project that shows
both the value of having an experimental prototype and the
value of using RiceNIC as a design platform. In this project,
RiceNIC FPGA hardware and firmware was modified to al-
low multiple virtual machines running on the same system to
concurrently control a single NIC, improving the efficiency of
network virtualization. RiceNIC ran at full network speed,
allowing highly accurate performance measurements to be
taken that strongly demonstrate the improvements possible
with the new virtualized network architecture. In addition,
having a fully-capable hardware prototype allowed the ex-
perimental determination of the minimum data buffer size
on the NIC to enable full network throughput even in a
heavily loaded system. This helped prove that the proposed
technique was feasible in even a low-cost NIC.

In the remainder of this paper, Section 2 introduces RiceNIC
as an open prototyping platform for network server archi-
tecture research, and evaluates its performance. Then, Sec-
tion 3 presents a case study on using RiceNIC for experimen-
tal research and Section 4 discusses how the NIC could be
used in education. Section 5 discusses some of the challenges
inherent in using simulators in network server architecture
research, and presents prototyping as a valuable alternative
limited by the currently available programmable NICs. Fi-
nally, Section 6 concludes the paper.

2. RICENIC PLATFORM
RiceNIC is a Gigabit Ethernet network interface card with
open hardware and software specifications. It is specifically
designed for experimental network server architecture re-
search, and provides considerable design flexibility and nu-
merous computational and memory resources. RiceNIC is
built on the Avnet Virtex-II Pro Development Board shown
in Figure 1. This FPGA prototyping board includes all of
the components necessary for a Gigabit Ethernet network

Figure 1: RiceNIC PCI Card

interface with embedded processors and on-board memory.
The commercial availability of this board obviates the need
to custom-design a similar board.

The architecture and interconnection of the FPGAs, mem-
ories, and other devices on the Avnet board is shown in
Figure 2. The Xilinx Virtex-II Pro FPGA on RiceNIC con-
tains most of the NIC logic, including the PowerPC proces-
sors, on-chip memories, MAC controller, DMA unit front-
end, and DDR memory controller. The PHY and DDR
memories are directly connected to the Virtex FPGA. Most
components on the Virtex FPGA are interconnected by a
processor local bus (PLB). The smaller Spartan-IIE FPGA
contains the 64-bit, 66 MHz PCI controller, the back-end
DMA controller, and a SRAM memory controller that is ac-
cessible by both the NIC and host system. Both the MAC
and PCI units are built around low-level interfaces provided
by Xilinx; however, those units are wrapped with a custom
descriptor-based control system to integrate them into the
rest of the system and to provide flexible software control
over the hardware functionality. A complete description of
the NIC design can be found in [21].

2.1 Facilities for Experimentation
RiceNIC has several design elements that make it particu-
larly user-friendly for experimental applications, including
a serial console to the embedded processors, timer-based
profiler, software-controlled MAC and DMA hardware as-
sist units, and large quantities of free memory and FPGA
resources for new innovations.

Serial Console.Unlike any other commercially available
network interface, RiceNIC provides a UART that is acces-
sible over the PLB by the PowerPC processors. This UART
interfaces with a serial port on the NIC that can be con-
nected to an RS-232 serial port on an external computer,
allowing terminal access directly to the network interface
firmware. The firmware can display status and debugging
information to the terminal and provide a command-line in-
terface for querying the NIC as it operates. Such terminal
access greatly facilitates debugging, development, and ex-
perimental evaluation of the network interface.

Statistical Profiler.A timer-based statistical profiler is in-
cluded with the baseline firmware. This tool can be used
to view the firmware execution time on a per-function ba-
sis, and thus determine the most frequently executed in-
structions. It operates similarly to statistical profilers for
modern general-purpose processors. The profiler facilitates

2

DDR

Memory

(256 MB)

Bridge

PCI

SRAM

(2 MB)

Gigabit

MAC

PowerPC 405

Embedded Processor

(300 MHz)

PLB Bus

I-Cache

(16 KB)

D-Cache

(16 KB)

BRAM

(32 KB)

Virtex FPGA

Spartan FPGA

Ethernet

PCI Bus

RiceNIC

PowerPC 405

Embedded Processor

(300 MHz)

I-Cache

(16 KB)

D-Cache

(16 KB)

Scratchpad

(2 KB)

Back-End

DMA

SRAM

Controller

Bridge

Front-End

DMA
DDR

Controller
UART

RS-232

Hardware

Events

Control

Unit

Figure 2: RiceNIC System Architecture

experimental evaluation and optimization of developmental
network interface firmware.

Media Access Control.The media access control (MAC)
unit is responsible for transferring data between NIC mem-
ories attached to the PLB and the physical interconnect
(PHY) module. RiceNIC provides the PowerPC firmware
significant flexibility in controlling the MAC operation
through the use of descriptors. These 64-bit control de-
scriptors are transferred to the MAC unit, stored in FIFO
queues, and consumed by the MAC when it is able to pro-
cess them. By using explicit descriptors under processor
management, this architecture gives the firmware flexibility
to manage the hardware functions of the MAC unit. Un-
like conventional NICs, such as the Tigon 2 [1], that use
a contiguous circular receive buffer, RiceNIC allows buffers
to be placed arbitrarily in memory under firmware control.
This allows the implementation and evaluation of advanced
algorithms, such as out of order processing of received pack-
ets, that would be difficult if a simple circular buffer was
mandated by the hardware.

An optional hardware unit can calculate the TCP or UDP
checksum on both transmitted and received packets. For
transmitted packets, the checksum is calculated when the
packet is transferred from on-NIC memory to the MAC
and placed directly in the outgoing datastream at a user-
specified location. This allows the NIC processor to modify
the packet (or create new packets entirely!) and still gain
the performance benefits of a hardware checksum module.

The MAC unit also implements gather transmit and can as-
semble a single packet from discontiguous regions in NIC
memory. This capability is very useful in NIC research such
as TCP offloading where the NIC processor generates pack-
ets itself instead of merely forwarding data generated by the
host system. In this scenario, the NIC does not need to copy
packet data to a contiguous buffer for transmission.

Direct Memory Access.RiceNIC, like all modern NICs,
transfers data to and from the host using direct memory ac-
cess (DMA). A custom-built DMA assist unit transfers data
in 2 KB bursts between NIC memory and main memory

via the PCI bus. As with the MAC unit, the DMA unit is
controlled by the firmware through the use of descriptors,
allowing the firmware flexible control over the operation of
the hardware, and enabling scatter/gather I/O in each direc-
tion. The DMA unit processes each descriptor and performs
the data transfer asynchronously.

NIC Memory.RiceNIC includes substantial memory re-
sources both in the FPGA fabric and on the NIC. Together
these memories are orders of magnitude larger than those
found on a conventional network interface, enabling storage-
intensive NIC research. For general-purpose storage, 256MB
of DDR-SDRAM is attached to the Virtex FPGA. 32 KB of
on-FPGA BRAM and 16 KB processor data caches are pro-
vided for frequently accessed data. Finally, 2 MB of SRAM
is attached to the Spartan FPGA.

The NIC memories have widely differing performance and
capabilities. The SRAM has very high latency due to its
remote location across the FPGA bridge, but is very useful
as shared memory between the host system and the NIC be-
cause it is accessible via PIO from both. The DDR-SDRAM
module provides the most storage capacity, but at a higher
access latency than the small on-chip BRAM and processor
cache. Given these differences, data can be placed in the
appropriate memories based upon its size and the frequency
with which it is accessed. Thus, RiceNIC gives the pro-
grammer substantial flexibility to explore design tradeoffs
regarding NIC memory capacity, performance, and price.

Available Resources.The Virtex FPGA on RiceNIC still
has substantial resources available for future research and
development. The implementation of a fully functioning Gi-
gabit Ethernet NIC consumes less than 40% of the embed-
ded BRAM, less than 1% of the DDR-SDRAM, and less
than 50% of the reconfigurable logic elements. This leaves
significant design resources for the implementation of addi-
tional features.

The Spartan FPGA, however, is essentially filled to capac-
ity in the current design. The NIC architecture shown in
Figure 2 requires that the Spartan FPGA contain the PCI
core and SRAM memory controller. Fortunately, it is likely

3

0 250 500 750 1000 1250 1500
0

100

200

300

400

500

600

700

800

900

1000

TCP Payload Size (Bytes)

T
C

P
 T

hr
ou

gh
pu

t (
M

bp
s)

Theoretical
Broadcom TX
Broadcom RX
RiceNIC TX
RiceNIC RX

Figure 3: Network Throughput

that hardware enhancements would be most effective on the
larger and faster Virtex chip. If additional logic resources
were required on the Spartan, the DMA data buffers stored
there could be reduced from their current 2 KB size at a cost
of reducing the burst length and efficiency of PCI transfers.

2.2 Performance Evaluation
This section briefly discusses the performance of RiceNIC
using a lightweight TCP streaming network benchmark
between two similarly-configured Opteron servers running
Linux 2.6. The server being tested used either the RiceNIC
or a commercial Broadcom 5704C NIC, and the other end-
point used the same Broadcom NIC. The host systems were
not the bottleneck in any test, and the TCP stacks were con-
figured to saturate the NICs with low CPU utilization. Note
that the MTU was specifically lowered to transmit small
packets. Otherwise, Linux would merge multiple small TCP
packets into one large packet before delivering it to the NIC
for transmission.

RiceNIC was configured with firmware that implements a
fully functioning Gigabit Ethernet network interface and
only uses 1 of the 2 available PowerPC processors. For both
NICs, checksum offloading was enabled.

Figure 3 shows the TCP throughput of RiceNIC, the Broad-
com NIC, and the theoretical Ethernet limit for a range of
TCP packet sizes. As the figure shows, RiceNIC closely
tracks the performance of the Broadcom NIC, and the theo-
retical Ethernet limit, for packet sizes larger than 500 bytes
when transmitting and larger than 900 bytes when receiv-
ing. For smaller packet sizes, RiceNIC is CPU limited by
the higher packet rate, leading to lower throughput than
the Broadcom NIC. Furthermore, RiceNIC’s receive per-
formance is less than its transmit performance because re-
ceive processing requires more per-packet computation to
verify checksums. The second unused PowerPC processor
on RiceNIC could be employed to increase throughput for
smaller packet sizes. However, the network traffic of many
applications is biased towards larger packets, so improving
the throughput for smaller packets may not provide any
application-level performance improvements.

3. RESEARCH WITH RICENIC
RiceNIC facilitates experimental evaluation of complex
hardware and software changes to the network subsystem.
This section introduces a research effort in which prototyp-
ing with RiceNIC was critical to the experimental process:
concurrent direct network access for virtual machine mon-
itors [25]. In addition, this section explores two recent re-
search efforts — network interface data caching [12] and
TCP connection handoff to the NIC [11] — that were limited
by existing prototyping technology and would have bene-
fited greatly from RiceNIC had it been available at the time.
These case studies show the flexibility of RiceNIC for net-
working research and illustrate the value of a fully-capable
experimental prototype.

3.1 Support for Virtualization
Virtual machine monitors (VMMs) allow multiple virtual
machines running on the same physical machine to share
hardware resources. To support networking, such VMMs
must virtualize the machine’s network interfaces by pre-
senting each virtual machine with a software interface that
is multiplexed onto the actual physical NIC. The overhead
of this software-based network virtualization severely limits
network performance.

Concurrent direct network access (CDNA) combines both
software and hardware components to significantly reduce
the overhead of network virtualization in VMMs [25]. The
CDNA network virtualization architecture provides virtual
machines running on a VMM safe direct access to the net-
work interface. With CDNA, each virtual machine is allo-
cated a unique context on the network interface and com-
municates directly with the network interface through that
context. In this manner, the virtual machines operate as if
each has access to its own dedicated network interface.

RiceNIC hardware and firmware were modified to enable
a prototype implementation of CDNA. First, the SRAM
controller was altered to divide the low 512 KB of SRAM
memory into 128 independent contexts of 4 KB each. Each
context is used by a separate virtual machine to transfer
control data via PIO to the network interface, while bulk
data is still transferred by DMA operations. A conventional
network interface would only need a single context, but in
order for the NIC to directly communicate with multiple
guest operating systems in a virtual machine monitor, each
guest needs its own control region. By making each context
the same size as a physical page, 4 KB, the virtual machine
monitor can map each context into the address space of a
unique guest operating system. A custom hardware event
notification system was also implemented on the FPGA to
provide the firmware an efficient and low-latency method to
determine when a context is updated by a virtual machine
with new control information. This eliminates the need for
the firmware to constantly poll each context searching for
updated information.

In addition to modifying RiceNIC hardware, the NIC
firmware was also modified to independently communicate
with the guest operating systems through these contexts, as
well as perform network traffic multiplexing and demulti-
plexing. This requires about 8 MB of additional NIC mem-
ory, which easily fits within the 256 MB DDR SODIMM.

4

Even with these modifications, it was still not necessary
to use the second PowerPC processor. Finally, the VMM
was modified to communicate with the firmware to provide
memory protection among the guest operating systems and
ensure that they do not direct RiceNIC to transfer data to
or from physical memory that is not owned by that guest.

These modifications to RiceNIC firmware and FPGA hard-
ware resulted in significant networking performance im-
provements for virtual machine monitors. Both the system
throughput with a single guest OS, and the system scal-
ing for increasing numbers of guest operating systems, were
improved by significant margins [25]. These improvements
would be difficult, if not impossible, to achieve with any
other existing Ethernet network interface, and show the ad-
vantages of using RiceNIC for research into future network
interface architectures.

The CDNA prototype on RiceNIC proved very useful in ex-
perimentally determining key architectural features, such as
the minimum size of on-NIC packet buffers per virtual ma-
chine to fully saturate the Ethernet link. This was an im-
portant contribution of the published research, because it
was found that the per-OS buffer requirements of 384 KB
were well within the capability of a modern NIC and could
be implemented at a low cost. Estimating the buffer size in
a virtualized system is difficult, because buffer requirements
are directly linked to non-obvious scheduling decisions by
the virtual machine monitor that determine how frequently
each guest operating system can execute. The less frequently
an OS runs, the more buffering it needs to maintain net-
work throughput. With the RiceNIC prototype, a series of
focused experiments on a heavily-loaded virtualized system
were conducted at at a wide range of buffer sizes in order to
determine the best size for optimal performance. Perform-
ing these experiments in simulation would have been difficult
because saturating the buffers required execution times in
the order of tens of seconds, and most simulations are only
run for brief timeslices in order to reduce simulation time.

3.2 Prior Projects
Several prior projects at Rice would also have benefited from
the use of RiceNIC. In particular, resource constraints on
existing network interfaces restricted work on network in-
terface data caching [8, 12] and connection handoff for TCP
offloading [10, 11]. These projects used a combination of
Tigon 2 programmable network interfaces and full system
simulation to evaluate innovations involving the network in-
terface. The knowledge gained from these projects directly
motivated the development of RiceNIC as a far more ca-
pable network interface than those based on the Tigon 2
architecture. RiceNIC would have enabled a complete pro-
totype implementation of these innovations, allowing more
sophisticated evaluations of these concepts in real systems.

3.2.1 Network Interface Data Caching
Network interface data caching reduces local interconnect
traffic on network servers by caching frequently-requested
content on a programmable network interface [8, 12]. The
operating system on the host CPU determines which data to
store in the cache and for which packets it should use data
from the cache. To facilitate data reuse across multiple pack-
ets and connections, the cache only stores application-level

response content (such as HTTP data), with application-
level and networking headers generated by the host CPU.
Therefore, packets are composed of multiple fragments,
some of which reside in main memory and some of which re-
side in the memory on the NIC. The NIC must have enough
processing power to properly assemble packets from these
fragments. Furthermore, the NIC must have a large enough
memory, on the order of 16 MB, to cache a sufficient amount
of application-level data.

While the Tigon 2 had sufficient processing power to as-
semble packets on the NIC, it did not have enough storage
to fully implement network interface data caching. In or-
der to evaluate the idea, a larger memory was emulated by
allocating a single page on the NIC as the cache. Despite
the cache’s small size, the operating system managed the
cache as if it were much larger. Data was transferred to the
cache and written into the single page based upon informa-
tion held in the cache directory for a full-sized cache. All
cached payload data was read from this single page, so out-
going packets did not contain the correct payload. While
this emulation strategy provides accurate results—all data
transfers are performed correctly—it yields incorrect traffic
on the network. This made correctness and performance de-
bugging difficult. RiceNIC would resolve this problem, as it
has sufficient memory to evaluate cache sizes that are much
larger than those considered in the original research.

3.2.2 Connection Handoff
Using connection handoff, the operating system can offload
a subset of TCP connections in the system to the network
interface, while the remaining connections are processed on
the host CPU [10, 11, 15, 16]. Offloading can reduce com-
putation and memory bandwidth requirements for packet
processing on the host CPU. However, full TCP offloading
may degrade system performance because finite processing
and memory resources on the network interface limit the
amount of packet processing and the number of connections.
Using handoff, the operating system controls the number of
offloaded connections in order to fully utilize the network
interface without overloading it. Handoff is transparent to
the application, and the operating system may choose to
offload connections to the network interface or reclaim them
from the interface at any time. As with network interface
data caching, connection handoff requires increased process-
ing and storage from the network interface. The NIC must
perform TCP/IP processing and it must have sufficient stor-
age to hold both data and state information for connections
that have been handed off to the NIC.

The implementation of connection handoff requires modifi-
cations to the operating system and to the network interface.
It also changes the communication interface between the op-
erating system and the NIC. In order to guarantee that the
operating system’s behavior was functionally correct, con-
nection handoff was first implemented on a prototype sys-
tem. The initial prototype was developed with a network
interface based upon the Tigon 2 architecture. As connec-
tion handoff was developed on a real system, it was possible
to ensure that the operating system could correctly handle
the complex asynchronous behavior of the modified network
interface. Using a simulator would be far too slow to pro-
vide interactive feedback during the design process. Further-

5

more, it would be nearly impossible to guarantee that the
modified operating system was functioning correctly, rather
than relying on some inaccuracy in the simulator. How-
ever, the Tigon 2 has insufficient processing and memory
resources to support more than about 100 Mbps when per-
forming connection handoff. It was sufficient to verify cor-
rectness and to gather some information about system be-
havior. For a more thorough evaluation, the exact operating
system and firmware used on the prototype were run within
the Simics [14] full system simulator. Simics modules were
implemented and/or modified to model the behavior of a
network interface that supports connection handoff. The ex-
istence of a prototype allowed the simulator to be validated
against systems with and without support for connection
handoff, lending further credibility to the experimental eval-
uation of connection handoff. RiceNIC would have obviated
the need for a second, simulation-based evaluation, as it has
sufficient processing and memory resources to fully evaluate
connection handoff in a real system.

4. EDUCATION WITH RICENIC
In addition to being a useful experimental tool for network
server architecture research, RiceNIC can also be used to en-
able experiment-based education in computer architecture
and networking courses. The complete and freely available
RiceNIC reference design, which includes both hardware and
software design files, provides a convenient baseline system
and allows students to focus on implementing the specific
architectural modifications in question, instead of building
a functional NIC from scratch. This allows even a semester-
long course to integrate hands-on engineering with class-
room work.

To evaluate the flexibility of the RiceNIC design for educa-
tion purposes, the baseline NIC was modified to include net-
work address translation (NAT) services. Obviously, NIC-
based NAT services are not novel, but their implementation
does serve to show how RiceNIC firmware can be easily ex-
tended to implement additional services above and beyond
basic networking. This is representative of a class project
that could experimentally compare the tradeoffs between
performing network address translation on the host proces-
sor or on the NIC.

RiceNIC firmware was modified to inspect each packet and
perform NAT services in which all internal nodes can initi-
ate connections to the external network, but external nodes
can only initiate connections to specific ports that are for-
warded to internal servers. All traffic not belonging to either
connection type is dropped. A server with one RiceNIC and
one conventional NIC can then operate as a fully function-
ing NAT firewall. RiceNIC is the interface to the external
network and the conventional NIC is the interface to the in-
ternal network. IP forwarding is enabled on the host Linux
system to forward all packets between the internal and ex-
ternal networks.

In this configuration, RiceNIC was able to sustain TCP
stream throughput within 3% of the theoretical Ether-
net limit for incoming and outgoing NAT traffic, using
maximum-sized packets. The NAT processing code is run-
ning on the same PowerPC processor that performs all of
the NIC management tasks, and that processor still has idle

cycles remaining. In addition, the second PowerPC proces-
sor is completely idle and available for other tasks. This
shows that RiceNIC firmware can easily be extended with
new functionality and that substantial processing resources
exist on the NIC for more advanced projects. While only the
firmware was modified in this example, significant FPGA
hardware resources are also available on the NIC, and some
packet-inspection and processing tasks could be accelerated
in hardware as a more advanced class project.

Experimental education uses for RiceNIC are not limited
just to network interfaces, however. In conjunction with
other freely-available academic tools, a whole reconfigurable
and programmable network ecosystem can be constructed
in the classroom. FPGA-based switches and routers have
been created [13], including the active “NetFPGA” design
from Stanford [4, 24]. These boards and programming kits
are freely available for academic and research use.

The second generation system, NetFPGA-v2, provides a
four-port Gigabit Ethernet PHY, a Virtex-II Pro FPGA
with two PowerPC processors, 4 MB of onboard memory,
and a 32-bit/33MHz PCI bus interface [24]. This board also
provides high-speed serial links to connect several NetFPGA
boards together. The system has been used in several
project-based classes where teams of students work to de-
sign, construct, and test an internet router or smart Ether-
net switch. Such a course allows students to gain hands-
on experience with common Internet protocols. Because
both FPGAs and embedded processors are available for use,
students can experimentally explore the tradeoffs in per-
formance and design complexity between implementing key
IP router features in hardware and software [24]. In addi-
tion, the course also includes an open design portion where
the students choose their own feature to design and test.
The chosen projects span a broad spectrum of network top-
ics, including the implementation of MAC-level encryption,
a hardware firewall, VPN support, and man-in-the-middle
SSH attacks [4].

The NetFPGA and RiceNIC projects can be used in a com-
plimentary fashion. NetFPGA is well suited for use as a
router or switch due to its 4 network ports and slower 33MHz
interface with the PCI bus that limits communication to the
host system. RiceNIC is better used as a NIC because it
only has 1 network port and a faster (64-bit/66-MHz) in-
terface with the PCI bus. The NetFPGA project includes
reference designs for an IPv4 router and network switch,
while RiceNIC provides a NIC reference design. Both sys-
tems could be used to build an entirely reconfigurable and
programmable networking lab where all of the endpoints
and routing fabric can be modified at will. Such a labo-
ratory would easily allow for the experimental exploration
of hardware/software design tradeoffs in network system ar-
chitectures. It would also allow the implementation and
experimental evaluation of new networking architectures at
all levels of the spectrum, from a single device to a whole
ecosystem of networked devices.

5. EXPERIMENTAL TOOLS IN
NETWORK SERVER ARCHITECTURE

RiceNIC is a capable and flexible prototyping tool that can
be used to evaluate future network server architectures.

6

Prior to RiceNIC, experimental network server work has
relied on full-system simulation and/or prototyping with
modern programmable NICs. These techniques have sev-
eral drawbacks that are mitigated by the RiceNIC platform.

5.1 Simulation
In recent years the network server architecture community
has embraced simulators to experimentally evaluate the per-
formance of new and innovative techniques involving both
hardware and software architectural changes [2, 3, 14, 19].
Simulation is often preferred because of the complexity, per-
ceived or real, of implementing a new architecture in hard-
ware. Relying solely on a simulator to accurately predict
future performance trends, however, is problematic. Past
research has shown the strengths and weaknesses of simu-
lation techniques in both computer architecture and, more
specifically, network server architecture [5, 6, 20].

When simulating an existing computer system with known
behavior, the key elements affecting performance can be de-
termined and modeled with high fidelity, and less significant
factors approximated to reduce simulation time and com-
plexity. Previous research showed that a simulator can be
an accurate predictor of network performance trends, but
only if it models all of the important factors that contribute
to system performance [6]. In simulations of new network ar-
chitectures, however, it is often hard to predict in advance
which factors contribute to latency in a real system, and
which can be neglected or approximated. An experimen-
tal prototype can be used to validate the simulator, correct
any errors or omissions in the design and establish an ac-
curate baseline. From this baseline, incremental architec-
tural changes can be proposed and experimentally tested
with high confidence that the simulated results are indica-
tive of real system behavior. If the experiment deviates too
far from the baseline design, however, the initial simulator
design assumptions and simplifications can become invalid,
and the accuracy of the simulation will suffer.

Modeling a network interface and its interactions within a
complete computer system challenges simulation designers
to extend their reach beyond the traditional user applica-
tion, processor and memory models. The performance of
a NIC is highly dependent on the complex interactions be-
tween many asynchronous components within the system,
including the processor, memory, I/O interconnect, and the
NIC itself. Memory latency, I/O bus contention, and in-
terrupt latency are only some of the key factors which sig-
nificantly affect total system performance. None of these
factors can be modeled with fixed latency or other constant
parameters, but they all need to be simulated with high
fidelity [3]. In addition to the hardware, a full software en-
vironment needs to be simulated, including both application
and operating system code, where the bulk of network pro-
cessing is performed. Finally, in many network architecture
experiments, multiple whole systems need to be simulated
along with the network connecting them together.

Even the most recent full system simulators, such as M5 [3]
and Simics [14], avoid using precise models whenever pos-
sible, due to the implementation complexity and computa-
tional time required for full simulation. Full system simula-
tion can be orders of magnitude slower than running an iden-

tical benchmark on real hardware. Instead, simple generic
component models are used and tuned to achieve the correct
bandwidth and latency.

In the case of the M5 network simulator, the authors were
able to tune the simulator to achieve network throughput re-
sults within 15% of the actual hardware being modeled [20].
To achieve this level of accuracy, however, required an it-
erative tuning process involving precise adjustments to the
memory system performance, processor TLB latency, and
other complex systems. Even after tuning the simulator, sig-
nificant differences remained. For example, the NIC trans-
mit interrupt rate was twice as high as real hardware, which
increased the processor overhead of interrupt-handler rou-
tines and decreased the simulated throughput. If a real test
machine had not been available to compare the simulator
against, this effect might never have been detected.

TCP performance can be sensitive to side-effects of common
simulation techniques. Because it is infeasible to simulate
complete runs of real-world workloads, experiments may be
conducted by first using a fast functional simulator during
the “warm-up” stage of a test, and then running a highly
detailed (and much slower) microarchitecture simulator and
taking a short data sample assumed to be representative of
the average system performance. However, the TCP self-
tuning policies can interfere with this technique [7]. TCP
will tune itself to unreasonably high throughput with the
fast functional model, and will suddenly become processor-
limited once switched to the complete simulator. The ef-
fect on TCP behavior is similar to sudden network conges-
tion, and TCP will immediately begin reducing its band-
width consumption to avoid packet loss and reach a new
steady-state. Capturing performance figures during this pe-
riod of unstable network throughput can lead to misleading
results. The simulation time required for TCP to complete
its tuning process can vary widely, from 10 to 150 million
cycles in a system with zero network delay, to even longer
in systems with real-world network delays. This forces re-
searchers to either perform very long-running simulations in
order to capture accurate results, or carefully characterize
their workloads and configurations in order to cut the TCP
tuning time to a more reasonable simulation length.

Furthermore, the behavior of TCP is strongly timing de-
pendent and is very sensitive to the performance of the
simulated system [7]. This is because the TCP algorithms
use the current network performance as a key to control-
ling future network communication. If packets are received
from the network faster than they can be processed, the
receiver buffers them until memory is exhausted, at which
point packets are lost. When the transmitter detects these
dropped packets, it retransmits the missing packets and
also decreases its transmission rate and transmit buffer size.
Thus, small timing variations, possibly due to small perfor-
mance modeling omissions or simplifications in the simula-
tor, can significantly alter the TCP execution path and thus
its behavior and performance.

Such timing-dependent effects are not limited to just the
TCP stack. Modern NICs attempt to aggregate multiple
packets together to be processed by the operating system
with a single interrupt, thus amortizing the high overhead of

7

a hardware interrupt across multiple packets. Small changes
in packet arrival and departure time can affect the rate at
which the NIC interrupts the host operating system for ser-
vice, and also vary the amount of packet processing that is
done on a per-interrupt basis. Variations in the interrupt
rate and the amount of aggregated networking work done
per interrupt can significantly affect the processing efficiency
and performance of heavily-loaded systems. Thus, accurate
simulation is difficult due to the sensitivity of networking
systems to small timing effects.

Revolutionary improvements in the field of computer I/O
architecture will likely require large-scale modifications to
both the hardware and software interfaces at the same time.
Changes of this magnitude, however, will alter the nature of
asynchronous communication in the system, challenging the
use of simulation-based experimentation. They may bring
previously second-order performance effects to the forefront,
potentially skewing the simulation and providing misleading
results. Even if the baseline simulator has been validated,
the new I/O architecture also must be validated to ensure
accurate results. Thus, simulation of network server archi-
tecture for both current and future research efforts has in-
herent challenges that are difficult to overcome.

5.2 Prototyping
The complexity of modern I/O architectures and the difficul-
ties of simulating them motivates the use of prototyping for
experimental evaluation. Therefore, many research projects
involving the network subsystem construct prototypes using
software programmable NICs, either for Ethernet or special-
ized interconnects such as Myrinet or Infiniband.

The Tigon 2 [1] is a programmable, full-duplex, gigabit Eth-
ernet NIC that has been frequently used for networking re-
search. The NIC contains two in-order 88MHz RISC pro-
cessors, up to 2 MB of SRAM, and a 64-bit/66 MHz in-
terface with the PCI bus. Device drivers, firmware, and
tools were publicly distributed for the Tigon. Projects that
made use of the Tigon 2 include: user-level message pass-
ing [22], firmware parallelization for 2-CPU NICs [9, 23],
network interface data caching [12], and user-level network
access [18]. In all cases, the authors extracted as much per-
formance from the hardware as possible; however, some lim-
itations in the Tigon 2 NIC are difficult to bypass. First, the
memory and computational resources are extremely limited
by modern standards, making aggressive experimentation
for performance analysis purposes challenging. Second, the
shared hardware units, such as the MAC and DMA, have
no concept of concurrency and require external synchroniza-
tion between the processors. Third, parallelization efficiency
could be improved since the Tigon 2 only implements a sin-
gle semaphore for CPU synchronization.

In addition to Ethernet NICs such as the Tigon, other
academic research projects have used specialized Myrinet
or Infiniband NICs. These recent NICs have faster em-
bedded processors and greater memory resources than the
Tigon. Projects involving payload caching on routers and
firewalls [26] and NIC-based intrusion detection [17], for
example, have used these specialized NICs as prototypes.
However, these projects are actually targeted at, and best
suited for, commodity Ethernet networks in commercial ap-

plications, and not high performance supercomputing net-
works. Building a prototype using one interconnect and
proposing a final system with a different interconnect poses
challenges for researchers who must reliably map perfor-
mance results between the two standards.

Due to the complexity of simulation, as discussed in Sec-
tion 5.1, prototyping is often preferred for experimental re-
search into novel network server architectures. However,
existing prototyping solutions also have their drawbacks.
RiceNIC offers a promising alternative for future network
interface prototyping. RiceNIC can enable a wider range of
innovations, as it provides more computation and memory
capacity than existing programmable NICs. Furthermore,
RiceNIC also provides an additional level of configurability
and expandability with the availability of significant FPGA
resources. This should enable efficient prototype implemen-
tations of advanced hardware/software innovations for fu-
ture network servers.

6. CONCLUSIONS
Networking is pervasive in modern computer systems, and
the efficiency of network processing is critical to many server
applications. Experimental research that involves modifica-
tion to the hardware and software of the network subsys-
tem is becoming increasingly important. RiceNIC, a pro-
grammable and reconfigurable Gigabit Ethernet network in-
terface, enables the efficient creation of experimental hard-
ware prototypes. RiceNIC is an open platform for network
interface research. The Avnet development board is com-
mercially available, and the FPGA configuration and sup-
porting software, including firmware and device drivers, are
provided freely for research and education.

Everything on RiceNIC is easily modifiable and is oriented
towards experimentation. The serial console makes RiceNIC
a friendly platform for research and education. The NIC
can easily display status information and the user can in-
teractively control the NIC. The capabilities of the plat-
form also provide the opportunity for other tools that are
commonly found only on general-purpose systems, such as
a timer-based statistical profiler. Significant computation
and storage resources are provided that are largely unuti-
lized when performing the basic tasks of a network inter-
face. Over half of the processing and memory resources on
the Avnet board are available for customization. This makes
RiceNIC an ideal platform for experimental research into ad-
vanced networking architectures that require new services of
the network interface.

The case studies of the previous sections highlight the use-
fulness of RiceNIC in both research and education settings.
The RiceNIC prototype for concurrent direct network access
in virtual machines was able to establish the full perfor-
mance potential of the design and experimentally determine
key configuration parameters such as buffer sizes. Using
the Gigabit Ethernet RiceNIC produced a more convinc-
ing demonstration than approaches based on existing net-
work interfaces or simulation because it is much closer to an
actual system implementation. In another case study, the
NAT firewall was easily implemented by simply modifying
the firmware, and showed how such tasks could easily be
done in a classroom setting.

8

Experimental research involving the network system is not
only possible, but is essential. The complex, asynchronous
interactions among system components and other external
systems demand high performance prototyping for accurate
experimental research. RiceNIC, and other tools like it,
are critical for the development and understanding of future
computer systems.

To learn more about RiceNIC, please visit:
http://www.cs.rice.edu/CS/Architecture/ricenic/

7. ACKNOWLEDGMENTS
The authors thank Paul Willmann, David Carr, Alan Cox,
Aravind Menon, and Willy Zwaenepoel for their work on
Concurrent Direct Network Access utilizing RiceNIC. This
project is supported by gifts from Advanced Micro Devices
and Xilinx, and grants from the Los Alamos Computer Sci-
ence Institute and the National Science Foundation under
grant No. CCF-0546140.

8. REFERENCES
[1] Alteon Networks. Tigon/PCI Ethernet Controller, Au-

gust 1997. Revision 1.04.

[2] T. Austin, E. Larson, and D. Ernst. Simplescalar: An
infrastructure for computer system modeling. Com-
puter, 35(2):59–67, 2002.

[3] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim,
A. G. Saidi, and S. K. Reinhardt. The M5 simulator:
Modeling networked systems. Micro, 26(4):52–60, 2006.

[4] M. Casado, G. Watson, and N. McKeown. Reconfig-
urable networking hardware: A classroom tool. In Pro-
ceedings of the Symposium on High Performance Inter-
connects, Aug. 2005.

[5] R. Desikan, D. Burger, and S. W. Keckler. Measur-
ing experimental error in microprocessor simulation. In
Proceedings of the International Symposium on Com-
puter Architecture, June 2001.

[6] J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy,
and M. Heinrich. FLASH vs. (simulated) FLASH: clos-
ing the simulation loop. In Proceedings of the In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems, Nov.
2000.

[7] L. Hsu, A. Saidi, N. Binkert, and S. Reinhardt. Sam-
pling and stability in TCP/IP workloads. In Proceed-
ings of the Workshop on Modeling, Benchmarking, and
Simulation, June 2005.

[8] H.-Y. Kim, V. S. Pai, and S. Rixner. Increasing web
server throughput with network interface data caching.
In Proceedings of the International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, Oct. 2002.

[9] H.-Y. Kim, V. S. Pai, and S. Rixner. Exploiting task-
level concurrency in a programmable network inter-
face. In Proceedings of the Symposium on Principles and
Practices of Parallel Programming, June 2003.

[10] H.-Y. Kim and S. Rixner. Connection handoff policies
for TCP offload network interfaces. In Proceedings of
the Symposium on Operating Systems Design and Im-
plementation, Nov. 2006.

[11] H.-Y. Kim and S. Rixner. TCP offload through connec-
tion handoff. In Proceedings of EuroSys, Apr. 2006.

[12] H.-Y. Kim, S. Rixner, and V. Pai. Network inter-
face data caching. IEEE Transactions on Computers,
54(11):1394–1408, Nov. 2005.

[13] J. W. Lockwood, N. Naufel, J. S. Turner, and D. E.
Taylor. Reprogrammable network packet processing on
the field programmable port extender (FPX). In Pro-
ceedings of the International Symposium on Field Pro-
grammable Gate Arrays, Feb. 2001.

[14] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hállberg, J. Högberg, F. Larsson, A. Moestedt,
and B. Werner. Simics: A full system simulation plat-
form. Computer, 35(2):50–58, 2002.

[15] Microsoft Corporation. Scalable Networking: Network
Protocol Offload – Introducing TCP Chimney, Apr.
2004.

[16] J. Mogul, L. Brakmo, D. E. Lowell, D. Subhraveti, and
J. Moore. Unveiling the transport. Computer Commu-
nication Review, 34(1):99–106, 2004.

[17] M. Otey, S. Parthasarathy, A. Ghoting, G. Li, S. Nar-
ravula, and D. Panda. Towards NIC-based intrusion de-
tection. In Proceedings of the International Conference
on Knowledge Discovery and Data Mining, 2003.

[18] I. Pratt and K. Fraser. Arsenic: A user-accessible Giga-
bit Ethernet interface. In Proceedings of IEEE INFO-
COM, Apr. 2001.

[19] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta.
Complete computer system simulation: The SimOS
approach. Parallel Distributed Technology, 3(4):34–43,
1995.

[20] A. G. Saidi, N. L. Binkert, L. R. Hsu, and S. K.
Reinhardt. Performance validation of network-intensive
workloads on a full-system simulator. In Proceedings of
the Workshop on Interaction between Operating System
and Computer Architecture, Oct. 2005.

[21] J. Shafer and S. Rixner. A reconfigurable and pro-
grammable gigabit ethernet network interface card.
Technical Report TREE0611, Rice University, Dec.
2006.

[22] P. Shivam, P. Wyckoff, and D. Panda. EMP: Zero-copy
OS-bypass NIC-driven gigabit ethernet message pass-
ing. In Proceedings of the Conference on Supercomput-
ing, Nov. 2001.

[23] P. Shivam, P. Wyckoff, and D. Panda. Can user-level
protocols take advantage of multi-CPU NICs? In Pro-
ceedings of the International Parallel and Distributed
Processing Symposium, Apr. 2002.

[24] G. Watson, N. McKeown, and M. Casado. NetFPGA: A
tool for network research and education. In Proceedings
of the Workshop on Architecture Research using FPGA
Platforms, Feb. 2006.

[25] P. Willmann, J. Shafer, D. Carr, A. Menon, S. Rixner,
A. L. Cox, and W. Zwaenepoel. Concurrent direct
network access for virtual machine monitors. In Pro-
ceedings of the International Symposium on High-
Performance Computer Architecture, Feb. 2007.

[26] K. Yocum and J. Chase. Payload caching: High-speed
data forwarding for network intermediaries. In Proceed-
ings of the USENIX Technical Conference, June 2001.

9

