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Abstract

One of the challenging tasks in designing a superior 
image compression system is encouraging collaboration
between the image processing researchers, system 
designers, and field users. To facilitate information 
sharing between these key players, a software package 
that allows the user to prototype various image 
compression algorithms was designed. This tool allows 
the users to analyze the compression results both 
quantitatively and qualitatively, and automatically 
documents the results. An overview of how the user 
interacts with the program and technical details of the 
image compression algorithms implemented are provided.

Building upon the software prototyping system, 
several methods are examined to transition to a final real-
time hardware compression system. One method is to 
build a set of wavelet filter banks based upon proven FIR 
technology. The second method is to build an 
experimental processor optimized for vector and matrix 
calculations. This processor allows for a quick transition 
from software to hardware since most of the compression 
algorithms use matrix mathematics.

1. Introduction

One of the quintessential problems facing 
image/video compression designers is the constant 
struggle between qualitative image quality measures and 
hard-line quantitative data values. An outstanding image 
compression ratio is useless if a doctor lacks the detail to 
correctly diagnose a patient or an intelligence operative 
cannot clearly decipher the contents of a map. 
Emphasizing collaboration early in development can 
enable the development of high-quality algorithms that 
both meet the quantitative metrics required and, equally 
important, the qualitative goals of the end-users.

Therefore, a tool is needed to solve these image 
compression problems. The tool must provide a way to 

analyze the results of competing algorithms both 
quantitatively and qualitatively while ensuring all 
individuals within the design process provide input.

2. Subjectivity vs. Objectivity

The nature of image compression is extremely 
subjective. The interpretation of “sufficient” quality varies 
from application to application and more importantly, from 
person to person. However, the engineers actually 
implementing the software/hardware systems need raw data 
thresholds for their algorithms to function correctly. These 
two dilemmas yield a difficult dichotomy between 
subjective human interpretations and objective 
mathematical abstractions.

Several mathematic metrics exist to help abstract the 
image quality problem. Traditionally, Mean Squared Error 
(MSE) and Peak Signal-to-Noise Ratio (PSNR) are 
employed by the scientific community in an attempt to 
numerically represent image quality. More resent 
developments in the image compression field have yielded 
another metric known as the universal quality index [10]. In 
the Wang and Bovik paper, the inaccuracy of MSE and 
PSNR was described. For instance, their research showed 
“the performance of MSE is extremely poor in the sense 
that images with nearly identical MSE are drastically 
different in perceived quality.” They clearly demonstrate 
that MSE and PSNR are insufficient as standalone 
standards.

The universal quality index improves on the MSE and 
PSNR notions, but it still does not incorporate the most 
important image compression factor: final image quality. 
All of these mathematical abstractions are wonderful and 
provide significant value to image compression, but the end 
user almost always desires clear images regardless of the 
performance metric used.

The tool described in this paper allows the user to 
view both the subjective data and objective data 
simultaneously. Subjective data in this case is side-by-side 
image comparisons between, for example, the original 
image and final compressed image, while objective data is 
mathematical data values such as the MSE, PSNR, or 
Quality Index. By showing both on screen simultaneously, 



this format allows users to attack the compression 
problem with a two-prong approach. 

3. Importance of Collaboration

Even in today’s communication-saturated society, 
the proliferation of critical design information is still one 
of the greatest challenges. Mathematicians, physicists, 
human factors groups, and engineers must constantly 
share information in order to get viable, cost-effective 
products to market. Furthermore, these individuals are 
usually not the people using the end product. Therefore, 
in case of image and/or video compression, the opinions 
and concerns of the actual field users (e.g. Military 
Screeners, Doctors/Medical Technicians, Internet 
Broadcasters, etc.) are crucial.

The blending of technical and non-technical people 
poses serious drawbacks to the design phase. This is 
because the various groups concentrate on different 
portions of the problem. Image processing researchers 
often focus on one aspect of an image compression 
system. For example, a researcher might spend years 
developing a preprocessing filter that reduces noise in an 
image, which improves compression ratio [6]. This 
researcher may not be concerned with the rest of the 
system. Similarly, the human effectiveness team is trained 
in the physical and psychological nature of the human 
body. These people have little or no regard for the 
preprocessing filter built by the aforementioned 
researcher.

System engineers focus on implementing the overall
system. In a video compression system the algorithm 
needs to be fast enough to meet a desired frame rate. 
System engineers are also interested in the transmission of 
the compressed image. Finding a balance between the 
bandwidth restrictions of so many bits/second, and the 
image integrity retained by the algorithm is on one of 
their greatest obstacles. According to Lt Col Kurt A. 
Klausner of the USAF, “Adding more bandwidth through 
the use of satellites is expensive at best and still might not 
solve all the problems.” Clearly, this is an issue facing 
today’s military [3].

In general, the end users simply desire the clearest 
image and the lowest possible cost. Clarity and cost are 
both subjective terms and vary throughout the application 
platforms. The end user may be interested in image 
quality, system latency, or compression ratios. A user in 
the medical field may need a lossless algorithm, but he or 
she is willing to sacrifice bandwidth for image quality.  
On the other hand, a web broadcaster needs to preserve 
bandwidth, and might accomplish this task at the expense 
of image/video quality.

4. Rapid Prototyping Interface Overview

In order to solve the aforementioned problems, a 
Rapid Prototyping Interface (RPI) was developed. This tool 
provides a means of efficiently evaluating competing 
compression algorithms. It directly supports the objective of 
this research effort, which is to both design and implement 
a superior hardware image/video compression system 
suitable for real-time embedded applications. 

The RPI has two main areas of competence. First, it
creates an environment allowing users to simultaneously 
analyze qualitative and quantitative results. Second, it 
provides a means of documentation that summarizes all of 
the qualitative and quantitative data. This fusing of 
information provides a common ground for both the 
technical and non-technical users to employ in their design 
discussions.

The RPI permits the user to select a source image or 
video file and subject it to a full set of compression and 
decompression routines. By coupling the RPI software with
reconfigurable/adaptive computing techniques, which 
accelerate development-to-deployment time, users at all 
stages are able to contribute feedback that directly impacts 
the final product.

Although both academic [4] and/or commercial [5] 
software packages exist that provide wavelet image and 
video compression capabilities, these packages lack the 
self-documenting capabilities of the RPI that enhance its 
effectiveness as a collaborative tool. Further, existing 
algorithms often utilize floating-point arithmetic, an 
obstacle in transitioning to the real-time embedded 
hardware implementation which is this group’s final 
objective. Finally, such pre-built implementations are 
typically difficult to decipher. The time spent understanding 
and customizing another group’s specific implementation of 
known algorithms could be better spent developing our own 
algorithms and architectures tailored to specific project 
requirements. Such a program plan has the side benefit of 
building a team of researchers intimately familiar with the 
details of wavelet compression technologies.

5. Rapid Prototyping Interface Capabilities

The current RPI accommodates images represented as 
standard color planes such as red-green-blue (RGB). These 
can be opened from a variety of file formats including 
bitmap, TIFF and JPEG for images and AVI for videos.  A 
wide range of image transforms are implemented in the 
RPI, including the Haar and Daubechies 4-20 wavelets [1] 
and a DCT. The system can convert images to luminance-
chrominance representation such as YUV and YIQ which 
can be exploited to increase compression effectiveness. The 



user may elect to employ horizontal and/or vertical down-
sampling of the chrominance signals from easy to use 
menus contained in the RPI. Additional menu selections 
provide parametric selections for down-sampling by two 
or four (or more) in each of the chrominance signals. 
Further sophistication in the down-sampling process 
permits the user to choose up- sampling approaches 
(resizing methods) such as linear, nearest and bi-cubic. 
Finally, a suite of encoders is provided, including stack-
run [7] and run-length algorithms.

Figure 1 below shows the main interface for the RPI, 
which was designed to be simple to operate for a wide 
range of users.

Figure 1. Main RPI Dialog

The user can access all image processing options 
from the ‘Settings’ menu.  These options include the 
transform type, quantizer step size, encoder, image 
representation, down-sampling, and up-sampling. The 
RPI saves the selected algorithms in a preferences file so 
that the user is not forced to re-enter all the options each 
time the RPI is executed.

Once the user has selected the parameters of interest 
for a particular compression evaluation, the compression 
process is activated. A typical display corresponding to 
this activation is shown in Figure 2 below.

Figure 2. Typical RPI Presentation of Images

The RPI displays an array of images of interest to the 
evaluator. Depending upon the selection made by the user, 
it presents the image prior to compression (original image), 
the image after a pre-processing pass (e.g., a noise 
reduction pass), the transformed image (e.g., the image after 
each multi-resolution from a wavelet process) and the 
reconstructed image (the image after compression and 
decompression processing).

The RPI is designed to allow for the easy expansion of 
new algorithms.  Each transform, quantizer, encoder, etc. is 
written with standard function parameters.  If a researcher 
wishes to add a new function then it merely needs to be 
written according to the standardized function definition.  

This modular design has already provided benefits for 
collaboration both inside and outside of our research team.  
The initial version of the RPI only had a run-length 
encoder.  Another researcher from a different university 
was using a stack-run encoder and obtaining higher 
compression ratios.  Our team was able to write a stack-run 
encoder function for the RPI and have the new algorithm 
providing results within a few days.

6. RPI as a Collaborative Tool

The RPI contains an automatic report generation 
facility. Evaluators at all levels of research, implementation 
and deployment are well aware that documentation is one 
of the most tedious and often neglected aspects of any 
evaluation. It is often in the documentation effort that a 
great deal of time is consumed and the most “breakage” of 
the required continuity for evaluation occurs. Cognizant of 
this, the RPI eliminates this problem for the evaluator by 
generating an HTML output report. An example output 
report is shown below in Figure 3. 
 

Figure 3. Example RPI Output Report



As the figure indicates, the automatically generated 
report contains the essential information and preserves the 
test and evaluation data. Not only is a great deal of time 
saved but the user is assured that the correct information 
is retained for future comparisons and collaboration. 
Collaboration among researchers, prime contractors, 
implementers and end-users is enabled and greatly 
facilitated. Any of the groups retaining use of the Rapid 
Prototyping Interface is able to confirm the accuracy and 
veracity of the efforts of their colleagues. Confidence 
among the groups responsible for development through 
deployment is thus facilitated and corresponding 
acceleration of the development through deployment 
cycle is enabled.

While it is purely a software package, the RPI 
directly supports the overall program goal of 
implementing a superior hardware image / video 
compression system suitable for real-time embedded 
civilian and military applications. This is because it is 
built in such a way that it simultaneously allows 
researchers, prime contractors, and field users to 
collaborate on algorithm development and analysis. This 
coordination of mission efforts allows everyone in the 
design to provide input on the final product. Figure 4
below illustrates the program plan showing how the RPI 
supports the hardware program objectives.

RPIRPI Implement in 
Hardware

Implement in 
Hardware

Analyze
Compression Ratio

Image Quality

Analyze
Compression Ratio

Image Quality

Significant Speed 
Improvement

Significant Speed 
Improvement

All Stages Provide InputAll Stages Provide Input
(Researchers, Field Users, etc.)(Researchers, Field Users, etc.)

Figure 4. Development to Deployment Program Plan

The methodology behind the RPI and the program 
plan shown in Figure 4 have been hugely praised and 
accepted as a viable solution to several Air Force 
obstacles such as: large satellite bandwidth requirements, 
poor dissemination of mission critical data, and sluggish 
development-to-deployment times. In fact, elements of 
the Predator System Program Office and prime Predator 
contractors are currently evaluating version 1.0 of the 
RPI. The effectiveness of the RPI in these early real-
world tests is still being determined and will be discussed 
in a future case study.

7. Transitioning to Hardware Implementations

The main purpose of this team’s research is to 
produce image/video compression algorithms for real-

time embedded hardware systems. The RPI furthers these 
goals by allowing the development and evaluation of 
algorithms by a wide spectrum of end-users in a purely 
software environment. Despite modern advances in Field-
Programmable Gate Arrays (FPGAs) and hardware 
description languages such as Verilog or VHDL, past 
experience has shown that the hardware implementation is 
still a tedious and time-consuming process. Having a 
software prototyping system such as the RPI allows for 
several algorithms to be developed and tested in the same 
time it would take for a single algorithm to be built in 
hardware. The software environment encourages developers 
to explore new ideas confident that the time commitment to 
see a working demonstration is small. 

At some point, however, working algorithms must be 
transitioned from the software based RPI to a hardware 
based real-time embedded system. Two approaches to 
accomplish this are considered. These approaches are both 
in the early stages of development, and will be discussed in 
depth in future publications as work continues.

The first approach in transitioning to a hardware 
implementation is to use wavelet filter banks that are based 
upon traditional Finite Impulse Response (FIR) filters.  
Research teams have used the approach in the past to great 
success [8, 9].

The second approach is to develop an experimental 
vector processor.  Many of the RPI algorithms mentioned 
above are elegantly implemented using matrix mathematics 
(e.g. down-sampling, wavelet transforms).  The proposed 
processor described in this section contains instructions that
naturally handle vector and matrix problems.  Such an 
instruction set allows the user to easily transition modules 
from the RPI to hardware.

7.1 Wavelet Filter Banks

Wavelet transformation algorithms may be 
represented in a two-channel filter bank as pictured in 
Figure 5. H0 and H1 represent the analysis filters while G0

and G1 represent the synthesis filters of the bank.
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Figure 5. Two-Channel Wavelet Filter Bank [2]



The filters, H0, H1, G0 and G1 may be constructed of 
finite impulse response filters [11]. The FIR filters of 
Figure 5 are programmed in VHDL or Verilog and 
implemented on an FPGA. The coefficients of the filters 
are stored in registers on-chip. 

This wavelet filter bank is part of a larger system as 
shown in Figure 6. 
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Figure 6. Wavelet Transform System

This system links two wavelet filter bank modules, 
performing both a forward and inverse wavelet transform, 
with the RPI running on a stand-alone PC. If desired, 
multiple filter banks and signal processors may be 
instantiated when concurrent processing is desired.

By linking the hardware modules with the RPI, an 
efficient testing and demonstration system is created. 
Once the hardware components are verified, the RPI 
dependence can be removed and the filter banks will be 
linked with whatever real-world system is desired.

The source image is loaded via the RPI, sent through 
the filter banks, and received via the RPI for final display. 
The transform coefficients can be readily modified 
through the RPI and delivered to the hardware device. 
The hardware has an on-chip serial port interface that 
receives the coefficients and image data from the PC and 
stores the coefficients into registers. 

7.2 Vector Processor

The wavelet filter bank approach previously 
described is straightforward to implement and thus is 
highly useful for prototyping systems and gaining 
designer familiarity with the hardware devices. It is 
limited in scope, however, and can only perform forward 
and inverse image transformations. In contrast, the 
proposed matrix processor can calculate vector and matrix 

operations for any application. Within the realm of image 
processing, it can transform, up and down-sample, and 
quantize images.

The mathematical process of image transformations 
may be characterized as a matrix problem. A gray-scale 
image can be represented by a matrix, Im consisting of pixel 
values, while a color image consists of a pixel matrix for 
each color plane.  The transform of the image is 
accomplished by constructing a transform matrix, W, and 
forming the transformed image TIm by the operation

TIm = W Im WT

where WT is the transpose of W. This operation performs 
the two-dimensional transformation of the image matrix [2].

The RPI, a custom-written MATLAB program for 
video and image compression, uses matrix operations. 
MATLAB was chosen, among other reasons, because its 
native mathematical paradigm (from the user perspective) is 
vector/matrix operations. Characterizing the transformation 
algorithms as matrix manipulations has two key advantages. 
First, the transform (and reconstruction) matrices may be 
computed a` priori, reducing the amount of computation 
required for each image.  Second, the matrix algorithms 
become identical and depend only upon the values in the 
transform matrix and the image matrix. Both of these 
advantages are highly significant for hardware 
implementations.

Following the lead of earlier, non-matrix oriented 
software prototypes, our previous hardware 
implementations mimicked the serial execution of multiply 
and add operations in a dedicated hardware device. By 
observing two key advantages of characterizing the 
algorithms as vector/matrix manipulations, however, a 
clearly beneficial new research effort has been initiated to 
develop a parallel, reconfigurable, hardware vector/matrix 
processor which supports the compression of image and 
video information.

We have noted that many video compression 
algorithms, such as wavelet transformations, can be 
expressed in terms of matrix manipulations. These matrix 
operations are easy to perform in our MATLAB software 
environment or even in a custom C++ class. Current 
hardware implementations of these algorithms, however, 
perform calculations in a linear element-by-element 
sequence. While mathematically equivalent and simple to 
implement, such designs are highly inflexible, and may 
require a total re-write to accommodate minor changes in 
the transformation algorithm being executed. In contrast, 
the vector processor allows for a near-infinite number of 



different transformation matrices to be applied to a 
common data block with no hardware changes required 
in-between. Further, because the transform (and 
reconstruction) matrices may be computed a` priori, the 
system performance is further enhanced over the past 
sequential implementations.

This processor is being developed upon the “blank 
slate” of a System-On-Programmable Chip (SOPC) 
device such as the Xilinx Virtex-II Pro FPGA. Modern 
reconfigurable computing technology offers clock rates 
up to 125 MHz and up to 10 million programmable gates. 
With high-speed I/O and on-chip memory, these devices 
are ideal for data and video processing tasks. Further, they 
feature dozens of built-in hardware multipliers, which will 
allow the vector processor to calculate results in parallel.

The payoff of this research is a low-cost design that 
combines the performance and flexibility of both 
hardware and software approaches within the framework 
of embedded video compression. This approach provides 
a significant advantage in today’s military climate of total 
information awareness, where every player in the 
information battlefield is clamoring for real-time video
data of terrain and targets.

8. Concluding Remarks

The RPI solves two significant image processing 
problems. It allows for analysis of both subjective image 
and objective quality metrics. Also, the RPI 
simultaneously allows technical and non-technical people 
(i.e. researchers, prime contractors, and field users) to 
collaborate on algorithm development and analysis.

The RPI permits the user to select a source image or 
video file and subject it to a full set of compression and 
decompression routines. It gives the user the flexibility to 
test different compression algorithms and compare 
results. The modular design supports easy expansion to 
add more algorithms. It automatically documents the test 
results on a single page, which allows for easy team
collaboration and eliminates this burdensome task from 
the user. 

By coupling the RPI software with 
reconfigurable/adaptive computing techniques, which 
accelerate development-to-deployment time, users at all 
stages are able to contribute feedback that directly 
impacts the final product.

Future objectives of the RPI include increasing the 
RPI distribution to additional users, improving the 
capability of the RPI as a collaborative tool, and 
implementing new image/video compression algorithms.  

Some of the algorithms to research include preprocessing 
filters to reduce noise, more wavelet transforms, and 
different encoders such as a Huffman encoder.

To enhance the collaborative nature of the RPI further, 
it has been proposed to extend the RPI to be a client-server
system. Each project team using the RPI would have a 
server (or an account on a single server) that would be 
responsible for distributing a common set of test images or 
video for processing. Using a copy of the RPI installed on 
client systems, the end users could perform the same image 
analysis tests described previously. At the end of each test, 
the results (both quantitative and qualitative) would be 
automatically uploaded back to the server, permitting the
developers to easily examine results from a large number of 
end-users.
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