
A Case for a Collaborative Computing Tool for Image Processing

Jeffrey A. Shafer, Joseph T. Fieler, Shawn T. Nichols
Frank A. Scarpino, Ph.D., John G. Weber, Ph.D.

Department of Electrical and Computer Engineering
Center for Collaborative Computing

University of Dayton
300 College Park, Dayton, Ohio 45469-0226

Keywords:

Image Processing, Reconfigurable Computing,
FPGA, Wavelet Transform, Image / Video Compression,
Signal Processing, Human Factors

Abstract

One of the challenging tasks in designing a superior
image compression system is encouraging collaboration
between the image processing researchers, system
designers, and field users. To facilitate information
sharing between these key players, a software package
that allows the user to prototype various image
compression algorithms was designed. This tool allows
the users to analyze the compression results both
quantitatively and qualitatively, and automatically
documents the results. An overview of how the user
interacts with the program and technical details of the
image compression algorithms implemented are provided.

Building upon the software prototyping system,
several methods are examined to transition to a final real-
time hardware compression system. One method is to
build a set of wavelet filter banks based upon proven FIR
technology. The second method is to build an
experimental processor optimized for vector and matrix
calculations. This processor allows for a quick transition
from software to hardware since most of the compression
algorithms use matrix mathematics.

1. Introduction

One of the quintessential problems facing
image/video compression designers is the constant
struggle between qualitative image quality measures and
hard-line quantitative data values. An outstanding image
compression ratio is useless if a doctor lacks the detail to
correctly diagnose a patient or an intelligence operative
cannot clearly decipher the contents of a map.
Emphasizing collaboration early in development can
enable the development of high-quality algorithms that
both meet the quantitative metrics required and, equally
important, the qualitative goals of the end-users.

Therefore, a tool is needed to solve these image
compression problems. The tool must provide a way to

analyze the results of competing algorithms both
quantitatively and qualitatively while ensuring all
individuals within the design process provide input.

2. Subjectivity vs. Objectivity

The nature of image compression is extremely
subjective. The interpretation of “sufficient” quality varies
from application to application and more importantly, from
person to person. However, the engineers actually
implementing the software/hardware systems need raw data
thresholds for their algorithms to function correctly. These
two dilemmas yield a difficult dichotomy between
subjective human interpretations and objective
mathematical abstractions.

Several mathematic metrics exist to help abstract the
image quality problem. Traditionally, Mean Squared Error
(MSE) and Peak Signal-to-Noise Ratio (PSNR) are
employed by the scientific community in an attempt to
numerically represent image quality. More resent
developments in the image compression field have yielded
another metric known as the universal quality index [10]. In
the Wang and Bovik paper, the inaccuracy of MSE and
PSNR was described. For instance, their research showed
“the performance of MSE is extremely poor in the sense
that images with nearly identical MSE are drastically
different in perceived quality.” They clearly demonstrate
that MSE and PSNR are insufficient as standalone
standards.

The universal quality index improves on the MSE and
PSNR notions, but it still does not incorporate the most
important image compression factor: final image quality.
All of these mathematical abstractions are wonderful and
provide significant value to image compression, but the end
user almost always desires clear images regardless of the
performance metric used.

The tool described in this paper allows the user to
view both the subjective data and objective data
simultaneously. Subjective data in this case is side-by-side
image comparisons between, for example, the original
image and final compressed image, while objective data is
mathematical data values such as the MSE, PSNR, or
Quality Index. By showing both on screen simultaneously,

this format allows users to attack the compression
problem with a two-prong approach.

3. Importance of Collaboration

Even in today’s communication-saturated society,
the proliferation of critical design information is still one
of the greatest challenges. Mathematicians, physicists,
human factors groups, and engineers must constantly
share information in order to get viable, cost-effective
products to market. Furthermore, these individuals are
usually not the people using the end product. Therefore,
in case of image and/or video compression, the opinions
and concerns of the actual field users (e.g. Military
Screeners, Doctors/Medical Technicians, Internet
Broadcasters, etc.) are crucial.

The blending of technical and non-technical people
poses serious drawbacks to the design phase. This is
because the various groups concentrate on different
portions of the problem. Image processing researchers
often focus on one aspect of an image compression
system. For example, a researcher might spend years
developing a preprocessing filter that reduces noise in an
image, which improves compression ratio [6]. This
researcher may not be concerned with the rest of the
system. Similarly, the human effectiveness team is trained
in the physical and psychological nature of the human
body. These people have little or no regard for the
preprocessing filter built by the aforementioned
researcher.

System engineers focus on implementing the overall
system. In a video compression system the algorithm
needs to be fast enough to meet a desired frame rate.
System engineers are also interested in the transmission of
the compressed image. Finding a balance between the
bandwidth restrictions of so many bits/second, and the
image integrity retained by the algorithm is on one of
their greatest obstacles. According to Lt Col Kurt A.
Klausner of the USAF, “Adding more bandwidth through
the use of satellites is expensive at best and still might not
solve all the problems.” Clearly, this is an issue facing
today’s military [3].

In general, the end users simply desire the clearest
image and the lowest possible cost. Clarity and cost are
both subjective terms and vary throughout the application
platforms. The end user may be interested in image
quality, system latency, or compression ratios. A user in
the medical field may need a lossless algorithm, but he or
she is willing to sacrifice bandwidth for image quality.
On the other hand, a web broadcaster needs to preserve
bandwidth, and might accomplish this task at the expense
of image/video quality.

4. Rapid Prototyping Interface Overview

In order to solve the aforementioned problems, a
Rapid Prototyping Interface (RPI) was developed. This tool
provides a means of efficiently evaluating competing
compression algorithms. It directly supports the objective of
this research effort, which is to both design and implement
a superior hardware image/video compression system
suitable for real-time embedded applications.

The RPI has two main areas of competence. First, it
creates an environment allowing users to simultaneously
analyze qualitative and quantitative results. Second, it
provides a means of documentation that summarizes all of
the qualitative and quantitative data. This fusing of
information provides a common ground for both the
technical and non-technical users to employ in their design
discussions.

The RPI permits the user to select a source image or
video file and subject it to a full set of compression and
decompression routines. By coupling the RPI software with
reconfigurable/adaptive computing techniques, which
accelerate development-to-deployment time, users at all
stages are able to contribute feedback that directly impacts
the final product.

Although both academic [4] and/or commercial [5]
software packages exist that provide wavelet image and
video compression capabilities, these packages lack the
self-documenting capabilities of the RPI that enhance its
effectiveness as a collaborative tool. Further, existing
algorithms often utilize floating-point arithmetic, an
obstacle in transitioning to the real-time embedded
hardware implementation which is this group’s final
objective. Finally, such pre-built implementations are
typically difficult to decipher. The time spent understanding
and customizing another group’s specific implementation of
known algorithms could be better spent developing our own
algorithms and architectures tailored to specific project
requirements. Such a program plan has the side benefit of
building a team of researchers intimately familiar with the
details of wavelet compression technologies.

5. Rapid Prototyping Interface Capabilities

The current RPI accommodates images represented as
standard color planes such as red-green-blue (RGB). These
can be opened from a variety of file formats including
bitmap, TIFF and JPEG for images and AVI for videos. A
wide range of image transforms are implemented in the
RPI, including the Haar and Daubechies 4-20 wavelets [1]
and a DCT. The system can convert images to luminance-
chrominance representation such as YUV and YIQ which
can be exploited to increase compression effectiveness. The

user may elect to employ horizontal and/or vertical down-
sampling of the chrominance signals from easy to use
menus contained in the RPI. Additional menu selections
provide parametric selections for down-sampling by two
or four (or more) in each of the chrominance signals.
Further sophistication in the down-sampling process
permits the user to choose up- sampling approaches
(resizing methods) such as linear, nearest and bi-cubic.
Finally, a suite of encoders is provided, including stack-
run [7] and run-length algorithms.

Figure 1 below shows the main interface for the RPI,
which was designed to be simple to operate for a wide
range of users.

Figure 1. Main RPI Dialog

The user can access all image processing options
from the ‘Settings’ menu. These options include the
transform type, quantizer step size, encoder, image
representation, down-sampling, and up-sampling. The
RPI saves the selected algorithms in a preferences file so
that the user is not forced to re-enter all the options each
time the RPI is executed.

Once the user has selected the parameters of interest
for a particular compression evaluation, the compression
process is activated. A typical display corresponding to
this activation is shown in Figure 2 below.

Figure 2. Typical RPI Presentation of Images

The RPI displays an array of images of interest to the
evaluator. Depending upon the selection made by the user,
it presents the image prior to compression (original image),
the image after a pre-processing pass (e.g., a noise
reduction pass), the transformed image (e.g., the image after
each multi-resolution from a wavelet process) and the
reconstructed image (the image after compression and
decompression processing).

The RPI is designed to allow for the easy expansion of
new algorithms. Each transform, quantizer, encoder, etc. is
written with standard function parameters. If a researcher
wishes to add a new function then it merely needs to be
written according to the standardized function definition.

This modular design has already provided benefits for
collaboration both inside and outside of our research team.
The initial version of the RPI only had a run-length
encoder. Another researcher from a different university
was using a stack-run encoder and obtaining higher
compression ratios. Our team was able to write a stack-run
encoder function for the RPI and have the new algorithm
providing results within a few days.

6. RPI as a Collaborative Tool

The RPI contains an automatic report generation
facility. Evaluators at all levels of research, implementation
and deployment are well aware that documentation is one
of the most tedious and often neglected aspects of any
evaluation. It is often in the documentation effort that a
great deal of time is consumed and the most “breakage” of
the required continuity for evaluation occurs. Cognizant of
this, the RPI eliminates this problem for the evaluator by
generating an HTML output report. An example output
report is shown below in Figure 3.

Figure 3. Example RPI Output Report

As the figure indicates, the automatically generated
report contains the essential information and preserves the
test and evaluation data. Not only is a great deal of time
saved but the user is assured that the correct information
is retained for future comparisons and collaboration.
Collaboration among researchers, prime contractors,
implementers and end-users is enabled and greatly
facilitated. Any of the groups retaining use of the Rapid
Prototyping Interface is able to confirm the accuracy and
veracity of the efforts of their colleagues. Confidence
among the groups responsible for development through
deployment is thus facilitated and corresponding
acceleration of the development through deployment
cycle is enabled.

While it is purely a software package, the RPI
directly supports the overall program goal of
implementing a superior hardware image / video
compression system suitable for real-time embedded
civilian and military applications. This is because it is
built in such a way that it simultaneously allows
researchers, prime contractors, and field users to
collaborate on algorithm development and analysis. This
coordination of mission efforts allows everyone in the
design to provide input on the final product. Figure 4
below illustrates the program plan showing how the RPI
supports the hardware program objectives.

RPIRPI Implement in
Hardware

Implement in
Hardware

Analyze
Compression Ratio

Image Quality

Analyze
Compression Ratio

Image Quality

Significant Speed
Improvement

Significant Speed
Improvement

All Stages Provide InputAll Stages Provide Input
(Researchers, Field Users, etc.)(Researchers, Field Users, etc.)

Figure 4. Development to Deployment Program Plan

The methodology behind the RPI and the program
plan shown in Figure 4 have been hugely praised and
accepted as a viable solution to several Air Force
obstacles such as: large satellite bandwidth requirements,
poor dissemination of mission critical data, and sluggish
development-to-deployment times. In fact, elements of
the Predator System Program Office and prime Predator
contractors are currently evaluating version 1.0 of the
RPI. The effectiveness of the RPI in these early real-
world tests is still being determined and will be discussed
in a future case study.

7. Transitioning to Hardware Implementations

The main purpose of this team’s research is to
produce image/video compression algorithms for real-

time embedded hardware systems. The RPI furthers these
goals by allowing the development and evaluation of
algorithms by a wide spectrum of end-users in a purely
software environment. Despite modern advances in Field-
Programmable Gate Arrays (FPGAs) and hardware
description languages such as Verilog or VHDL, past
experience has shown that the hardware implementation is
still a tedious and time-consuming process. Having a
software prototyping system such as the RPI allows for
several algorithms to be developed and tested in the same
time it would take for a single algorithm to be built in
hardware. The software environment encourages developers
to explore new ideas confident that the time commitment to
see a working demonstration is small.

At some point, however, working algorithms must be
transitioned from the software based RPI to a hardware
based real-time embedded system. Two approaches to
accomplish this are considered. These approaches are both
in the early stages of development, and will be discussed in
depth in future publications as work continues.

The first approach in transitioning to a hardware
implementation is to use wavelet filter banks that are based
upon traditional Finite Impulse Response (FIR) filters.
Research teams have used the approach in the past to great
success [8, 9].

The second approach is to develop an experimental
vector processor. Many of the RPI algorithms mentioned
above are elegantly implemented using matrix mathematics
(e.g. down-sampling, wavelet transforms). The proposed
processor described in this section contains instructions that
naturally handle vector and matrix problems. Such an
instruction set allows the user to easily transition modules
from the RPI to hardware.

7.1 Wavelet Filter Banks

Wavelet transformation algorithms may be
represented in a two-channel filter bank as pictured in
Figure 5. H0 and H1 represent the analysis filters while G0

and G1 represent the synthesis filters of the bank.

H0

H1 G1

G0H0

H1 G1

G0H0

H1 G1

G0

DSP

H0

H1 G1

G0H0

H1 G1

G0H0

H1 G1

G0

DSP

Figure 5. Two-Channel Wavelet Filter Bank [2]

The filters, H0, H1, G0 and G1 may be constructed of
finite impulse response filters [11]. The FIR filters of
Figure 5 are programmed in VHDL or Verilog and
implemented on an FPGA. The coefficients of the filters
are stored in registers on-chip.

This wavelet filter bank is part of a larger system as
shown in Figure 6.

Wavelet
Filter
Bank

Wavelet
Filter
Bank

Forward
Transform

Inverse
Transform

Transform Coefficients
and Program Control

Original
Image

Coefficients

Reconstructed
Image
Coefficients

Software
Hardware

Software
Hardware

Figure 6. Wavelet Transform System

This system links two wavelet filter bank modules,
performing both a forward and inverse wavelet transform,
with the RPI running on a stand-alone PC. If desired,
multiple filter banks and signal processors may be
instantiated when concurrent processing is desired.

By linking the hardware modules with the RPI, an
efficient testing and demonstration system is created.
Once the hardware components are verified, the RPI
dependence can be removed and the filter banks will be
linked with whatever real-world system is desired.

The source image is loaded via the RPI, sent through
the filter banks, and received via the RPI for final display.
The transform coefficients can be readily modified
through the RPI and delivered to the hardware device.
The hardware has an on-chip serial port interface that
receives the coefficients and image data from the PC and
stores the coefficients into registers.

7.2 Vector Processor

The wavelet filter bank approach previously
described is straightforward to implement and thus is
highly useful for prototyping systems and gaining
designer familiarity with the hardware devices. It is
limited in scope, however, and can only perform forward
and inverse image transformations. In contrast, the
proposed matrix processor can calculate vector and matrix

operations for any application. Within the realm of image
processing, it can transform, up and down-sample, and
quantize images.

The mathematical process of image transformations
may be characterized as a matrix problem. A gray-scale
image can be represented by a matrix, Im consisting of pixel
values, while a color image consists of a pixel matrix for
each color plane. The transform of the image is
accomplished by constructing a transform matrix, W, and
forming the transformed image TIm by the operation

TIm = W Im WT

where WT is the transpose of W. This operation performs
the two-dimensional transformation of the image matrix [2].

The RPI, a custom-written MATLAB program for
video and image compression, uses matrix operations.
MATLAB was chosen, among other reasons, because its
native mathematical paradigm (from the user perspective) is
vector/matrix operations. Characterizing the transformation
algorithms as matrix manipulations has two key advantages.
First, the transform (and reconstruction) matrices may be
computed a` priori, reducing the amount of computation
required for each image. Second, the matrix algorithms
become identical and depend only upon the values in the
transform matrix and the image matrix. Both of these
advantages are highly significant for hardware
implementations.

Following the lead of earlier, non-matrix oriented
software prototypes, our previous hardware
implementations mimicked the serial execution of multiply
and add operations in a dedicated hardware device. By
observing two key advantages of characterizing the
algorithms as vector/matrix manipulations, however, a
clearly beneficial new research effort has been initiated to
develop a parallel, reconfigurable, hardware vector/matrix
processor which supports the compression of image and
video information.

We have noted that many video compression
algorithms, such as wavelet transformations, can be
expressed in terms of matrix manipulations. These matrix
operations are easy to perform in our MATLAB software
environment or even in a custom C++ class. Current
hardware implementations of these algorithms, however,
perform calculations in a linear element-by-element
sequence. While mathematically equivalent and simple to
implement, such designs are highly inflexible, and may
require a total re-write to accommodate minor changes in
the transformation algorithm being executed. In contrast,
the vector processor allows for a near-infinite number of

different transformation matrices to be applied to a
common data block with no hardware changes required
in-between. Further, because the transform (and
reconstruction) matrices may be computed a` priori, the
system performance is further enhanced over the past
sequential implementations.

This processor is being developed upon the “blank
slate” of a System-On-Programmable Chip (SOPC)
device such as the Xilinx Virtex-II Pro FPGA. Modern
reconfigurable computing technology offers clock rates
up to 125 MHz and up to 10 million programmable gates.
With high-speed I/O and on-chip memory, these devices
are ideal for data and video processing tasks. Further, they
feature dozens of built-in hardware multipliers, which will
allow the vector processor to calculate results in parallel.

The payoff of this research is a low-cost design that
combines the performance and flexibility of both
hardware and software approaches within the framework
of embedded video compression. This approach provides
a significant advantage in today’s military climate of total
information awareness, where every player in the
information battlefield is clamoring for real-time video
data of terrain and targets.

8. Concluding Remarks

The RPI solves two significant image processing
problems. It allows for analysis of both subjective image
and objective quality metrics. Also, the RPI
simultaneously allows technical and non-technical people
(i.e. researchers, prime contractors, and field users) to
collaborate on algorithm development and analysis.

The RPI permits the user to select a source image or
video file and subject it to a full set of compression and
decompression routines. It gives the user the flexibility to
test different compression algorithms and compare
results. The modular design supports easy expansion to
add more algorithms. It automatically documents the test
results on a single page, which allows for easy team
collaboration and eliminates this burdensome task from
the user.

By coupling the RPI software with
reconfigurable/adaptive computing techniques, which
accelerate development-to-deployment time, users at all
stages are able to contribute feedback that directly
impacts the final product.

Future objectives of the RPI include increasing the
RPI distribution to additional users, improving the
capability of the RPI as a collaborative tool, and
implementing new image/video compression algorithms.

Some of the algorithms to research include preprocessing
filters to reduce noise, more wavelet transforms, and
different encoders such as a Huffman encoder.

To enhance the collaborative nature of the RPI further,
it has been proposed to extend the RPI to be a client-server
system. Each project team using the RPI would have a
server (or an account on a single server) that would be
responsible for distributing a common set of test images or
video for processing. Using a copy of the RPI installed on
client systems, the end users could perform the same image
analysis tests described previously. At the end of each test,
the results (both quantitative and qualitative) would be
automatically uploaded back to the server, permitting the
developers to easily examine results from a large number of
end-users.

9. References

[1] Daubechies, I., Ten Lectures on Wavelets, Society for
Industrial and Applied Mathematics, Philadelphia, 1992

[2] Goswami, J.C. and Chan, A.K, Fundamentals of
Wavelets: Theory, Algorithms and Applications, John
Wiley & Sons, New York, 1999

[3] Klausner, K., “Command and Control of Air and Space
Forces Requires Significant Attention to Bandwidth”,
Air and Space Power Journal, Vol. 17, No. 4, Winter
2002, pp. 69-77

[4] Lagendijk, I. et al, “VcDemo: Image and Video
Compression Learning Tool,” August 2003,
http://www-ict.its.tudelft.nl/~inald/vcdemo/

[5] Pegasus Imaging Corporation, “PICVideo
Wavelet2000 Codec,”
http://www.pegasusimaging.com/picvideowavelet.htm

[6] Pizurica, A., Philips, W., Acheroy, M, “A Joint Inter-
and Intrascale Statistical Model for Bayesian Wavelet
Based Image Denoising”, IEEE Transactions on Image
Processing, Vol. 11, No. 5, May 2002

[7] Tsai, M. J., Villasenor, J.D., Chen, F., “Stack-Run
Image Coding,” IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 6, No. 5, October
1996, pp. 519-521

[8] Turri, W, “Design And Hardware Implementation Of
A. Wavelet-Based Color Image Compression System,”
University of Dayton Masters Thesis, May 2002

[9] Villasenor, J.D., Belzer, B., Liao, J., “Wavelet Filter
Evaluation for Image Compression”, IEEE
Transactions on Image Processing, Vol. 4, No. 8,
August 1995, pp. 1053-1060

[10] Wang, Z. and Bovik, A.C., “A Universal Image Quality
Index”, IEEE Signal Processing Letters, Vol. 9., No. 3,
March 2002, pp. 81-84

[11] Xia, X-G and Suter, B. W., “Vector-valued wavelets
and vector filter banks,” IEEE Transactions on Signal
Processing, Vol. 44, No. 3, 1996, pp. 508-518

